
USOO8793599B1

(12) United States Patent (10) Patent No.: US 8,793,599 B1
Lajoie et al. (45) Date of Patent: Jul. 29, 2014

(54) HYBRID PROCESSING INTERFACE 7,594, 180 B1* 9/2009 Langmacher et al. 715,762
7,596,757 B2* 9/2009 Kowalski et al. 715,763
7,860,691 B2 * 12/2010 Beltran et al. TO3/1

(75) Inventors: R ESENSE his SR t 7.945,863 B1* 5/2011 Reid et al. 715/797
ilmar Koch, Oakland, CA (US); Ken 8.212,806 B2 * 7/2012 Maillot et al. 345,418

Oberheu, Berkeley, CA (US) 2005/0172242 A1* 8, 2005 Vienneau et al. 715/801
2009,0183093 A1* 7, 2009 Ducharme 715,763

(73) Assignee: Lucasfilm Entertainment Company 2011/0010647 A1 1/2011 Ducharme 715,763
Ltd., San Francisco, CA (US) 2013/00 13264 A1* 1/2013 Narayan et al. TO3/1

* cited b
(*) Notice: Subject to any disclaimer, the term of this c1ted by examiner

patent is extended or adjusted under 35 Primary Examiner — Kieu Vu
U.S.C. 154(b) by 207 days. Assistant Examiner — Andrew Chung

(21) Appl. No.: 13/209.771 (74) Attorney, Agent, or Firm — Kilpatrick Townsend &
Stockton LLP

(22) Filed: Aug. 15, 2011
(57) ABSTRACT

(51) Int. Cl. A system includes a computing device that includes a
G06F 3/00 (2006.01) memory configured to store instructions. The computing

(52) U.S. Cl. device also includes a processor configured to execute the p 9.
USPC 715/762; 715/763; 715/764; 715/765 instructions to perform a method that includes defining a first

(58) Field of Classification Search portion of a display as a workspace for presenting graphical
USPC 715/762 763, 764 765 elements that represent processing operations that define
See application file for complete search history. properties of an object. The method also includes defining a

second portion of the display, different from the first portion,
(56) References Cited for presenting a graphical stack that uses the properties from

U.S. PATENT DOCUMENTS

6,683,619 B1 1/2004 Samra 345,619
7,409.248 B2 * 8/2008 Davignon et al. ... 700.83
7,536,645 B2 * 5/2009 Ducharme 715,744

400

diffect
diffEffectix

diffectsamma
diffectCcmtrast)

diffeffectPyot SSS

cic

W. Diffuse Noise dulation

eles
Effect Maps Effect Trees

C C

O

the processing operations to define layers associated with the
object. The method also includes simultaneously presenting
the first and the second portion on the display.

27 Claims, 8 Drawing Sheets

402 404

WOKSOaCe 7 A

w material stack

Odiffuse gain) 436
Oreflection Color

440

raster fixma user data fixmar materialayers)

406

US 8,793,599 B1 Sheet 1 of 8 Jul. 29, 2014 U.S. Patent

106

FIG. 1

C-???)

US 8,793,599 B1 Sheet 2 of 8 Jul. 29, 2014 U.S. Patent

?? L?@?8|ñþ0|}\| 38?JN 3§ñ???] aes

US 8,793,599 B1 Sheet 3 of 8 Jul. 29, 2014 U.S. Patent

809

@

US 8,793,599 B1 U.S. Patent

US 8,793,599 B1

- - - - - - - - - -

xxxx

- - - - -

U.S. Patent

US 8,793,599 B1

809009
U.S. Patent

U.S. Patent Jul. 29, 2014 Sheet 7 of 8 US 8,793,599 B1

Define a portion of a display for presenting
graphical elements that represent processing
operations that define properties of an object

Define a portion of the display for a graphical
stack that uses the properties to define layers

associated with the object

Simultaneously present the graphical elements
and the graphical stack

on the display

FIG. 7

U.S. Patent Jul. 29, 2014 Sheet 8 of 8 US 8,793,599 B1

US 8,793,599 B1
1.

HYBRD PROCESSING INTERFACE

TECHNICAL FIELD

This document relates to systems and methodologies that
use a hybrid interface technique to graphically represent pro
cessing operations and define a multi-layered structure, for
example, to simulate the physics of layered materials.

BACKGROUND

With ever-increasing computational power and resources,
increasingly complex calculations can be efficiently com
puted in smaller and smaller periods of time. While quickly
computable, the underlying processing operations can reach
levels of complexities that may become difficult to compre
hend at both micro and macro levels. For example, hundreds
or thousands of processing operations may be used for simu
lating objects such as one or more materials and their appear
ance (e.g., a rusted, slightly dented, blue painted car). How
ever, Such large numbers of processing operations and their
interactions (e.g., to simulate the appearance of a complex
material) may be difficult to track let alone modify (e.g., add
a layer of Snow onto the rusted, blue painted car).

SUMMARY

The described systems and techniques provide a user inter
face that implements a hybrid technique to graphically rep
resent processing operations (e.g., for simulating the appear
ance of a material) and graphically represent layers of an
object (e.g., the simulated material). Along with allowing a
user to produce Such simulations or other types of processing
results, the graphical representations allow for efficient
review and modifying of the operations and the layers (e.g.,
adjust a processing operation, add one or more layers to
further define the appearance of a simulated material), etc.

In one aspect, a computer-implemented method includes
defining a first portion of a display as a workspace for pre
senting graphical elements that represent processing opera
tions that define properties of an object. The method also
includes defining a second portion of the display, different
from the first portion, for presenting a graphical stack that
uses the properties from the processing operations to define
layers associated with the object. The method also includes
simultaneously presenting the first and the second portion on
the display.

Implementations may also include any or all of the follow
ing features. The computer-implemented method of claim 1
may further include adding a layer onto the graphical stack for
introducing one or more properties to the object. Adding the
layer may include appending the layer to the graphical stack,
inserting the layer into the graphical stack or other similar
operation. Graphical representations may be used to repre
senta connection between a layer represented in the graphical
stack and a corresponding graphical element that represents a
processing operation associated with the connected layer. The
connection may be established based upon a naming conven
tion used by an input to the layer represented in the graphical
stack and a data source. The connection may be established
based upon a priority associated with the processing opera
tion. The graphical elements may include processing nodes of
a network. Adjustable parameters may be associated with the
processing operations. The graphical elements may be visu
ally compressed. The graphical elements may be expanded
from a visually compressed version of the graphical elements.
The object is a simulated material or other type or matter.

10

15

25

30

35

40

45

50

55

60

65

2
In another aspect, a system includes a computing device

that includes a memory configured to store instructions. The
computing device also includes a processor configured to
execute the instructions to perform a method that includes
defining a first portion of a display as a workspace for pre
senting graphical elements that represent processing opera
tions that define properties of an object. The method also
includes defining a second portion of the display, different
from the first portion, for presenting a graphical stack that
uses the properties from the processing operations to define
layers associated with the object. The method also includes
simultaneously presenting the first and the second portion on
the display.

Implementations may also include any or all of the follow
ing features. The processor may be configured to execute the
instructions to add a layer onto the graphical stack for intro
ducing one or more properties to the object. Adding the layer
may include appending the layer to the graphical stack, insert
ing the layer into the graphical stack or other similar opera
tion. Graphical representations may be used to represent a
connection between a layer represented in the graphical stack
and a corresponding graphical element that represents a pro
cessing operation associated with the connected layer. The
connection may be established based upon a naming conven
tion used by an input to the layer represented in the graphical
stack and a data source. The connection may be established
based upon a priority associated with the processing opera
tion. The graphical elements may include processing nodes of
a network. Adjustable parameters may be associated with the
processing operations. The graphical elements may be visu
ally compressed. The graphical elements may be expanded
from a visually compressed version of the graphical elements.
The object is a simulated material or other type or matter.

In another aspect, a computer program product tangibly
embodied in an information carrier and comprising instruc
tions that when executed by a processor perform a method
that includes defining a first portion of a display as a work
space for presenting graphical elements that represent pro
cessing operations that define properties of an object. The
method also includes defining a second portion of the display,
different from the first portion, for presenting a graphical
stack that uses the properties from the processing operations
to define layers associated with the object. The method also
includes simultaneously presenting the first and the second
portion on the display.

Implementations may also include any or all of the follow
ing features. The computer program product may further
including instructions that when executed by the processor
perform a method that includes adding a layer onto the
graphical stack for introducing one or more properties to the
object. Adding the layer may include appending the layer to
the graphical stack, inserting the layer into the graphical stack
or other similar operation. Graphical representations may be
used to represent a connection between a layer represented in
the graphical stack and a corresponding graphical element
that represents a processing operation associated with the
connected layer. The connection may be established based
upon a naming convention used by an input to the layer
represented in the graphical stack and a data source. The
connection may be established based upon a priority associ
ated with the processing operation. The graphical elements
may include processing nodes of a network. Adjustable
parameters may be associated with the processing operations.
The graphical elements may be visually compressed. The
graphical elements may be expanded from a visually com
pressed version of the graphical elements. The object is a
simulated material or other type or matter.

US 8,793,599 B1
3

Details of one or more implementations are set forth in the
accompanying drawings and the description below. Other
features, aspects and advantages will be apparent from the
description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 illustrates an object with a complex material appear
ance being simulated by a computing device.

FIG. 2 illustrates a user interface that implements a hybrid
technique for defining the appearance of a simulated material.

FIGS. 3, 4 and 5 illustrates user interfaces graphically
representing processing operations and a multi-layer stack for
simulating the appearance of a material.

FIG. 6 illustrates a graphical layout operations and layers
of a relatively complex simulated material.

FIG. 7 is an exemplary flowchart of operations for present
ing an interface that graphically represents processing opera
tions and a multi-layer Stack for defining the appearance of a
simulated material.

FIG. 8 is a block diagram of computing devices and sys
temS.

DETAILED DESCRIPTION

FIG. 1 illustrates a computational system 100 for executing
complex operations such as simulating the appearances of
one or more materials (e.g., a slightly rusted metallic material
of an automobile that is painted red). To layout and execute
Such operations, the computing system 100 implements a
hybrid technique in which processing operations, e.g., to
define the simulated appearance, are graphically represented
(e.g., with one or more networks of processing nodes). Fur
ther, layers are graphically represented, e.g., to define layers
associated with the appearance of the simulated material. For
example, distinct visual portions (e.g., rust, red paint, metallic
material, etc.) of the simulated object are graphically repre
sented as layers in a stack (e.g., an aligned graphical repre
sentation of a collection of the layers). Along with providing
a user with a relatively intuitive representation of the material
appearance simulation, the graphical representations of the
operations and the material appearance layers allow a user to
adjust the processing operations and layers along with modi
fying associated parameters.

In this particular example, the system 100 includes a com
puting device (e.g., a computer system 102) that is used for
designing complex processing operations (e.g., to simulate
the appearance of an object) by allowing a user to graphically
represent and edit the operations. Additionally, a stack struc
ture is used to define layers associated with the object (e.g.,
layers of different materials). As illustrated in the figure, a
display 104 (connected to the computer system 102) presents
an image 106 that includes a simulated ball 108 that appears
to hover in the scene. In this example, the simulated ball 108
is defined by layers of material Such as an inner metallic layer
that forms the base of the ball. Layers of paint and rust are also
included, for example, such that the ball 108 is perceived as
being weathered and old. Layers also may also appear to
change the geometry of an object, for example, a layer may be
applied to the ball 108 to simulate scratches, dimples, pox
marks or other types of blemishes. To provide such multi
layered representation of materials, a significant number of
operations may need to be designed and executed for each
layer. Additionally, one or more of the layers may need to be
adjusted such that a desired overall look of the ball 108 is
appropriately presented to viewers. Along with representing
Such a significant number of operations (e.g., hundreds, thou

10

15

25

30

35

40

45

50

55

60

65

4
sands, etc.) and the layers in an easily comprehensible layout,
representing the operations and layers for easy access (e.g.,
for making adjustments or further development) by a user
(e.g., a designer, animator, etc.) may be a challenge with the
ever-increasing complexity (e.g., to provide more realistic
simulations).

Referring to FIG. 2, an example graphical user interface
(GUI) 200 includes distinct regions for graphically laying out
and executing complex processing operations and represent
ing different layers (e.g., material layers). One or more tech
niques and methodologies may be implemented to provide
Such layout capabilities. For example, a hybrid technique may
be implemented that uses a stack structure to define multiple
layers (e.g., material layers) associated with a node-based
graph layout that defines operations associated with the layers
included in the stack. For example, each layer included in a
stack may represent a different layer of a material to be
represented (e.g., a paint layer, a rust layer, a scratched Sur
face layer, etc.) and a node-based graph may be used to define
operations for producing data associated with the layers (e.g.,
input data values for paint colors, rust textures, scratch pat
terns, etc.). By combining these two techniques, a single
interface may be provided that can represent a significant
amount of processing operations in a graphical layout that can
be easily comprehended by a user (and interacted with by the
user). Further, by appropriately representing the processing
operations in the graphical node-based layout, a user can
quickly navigate to regions of interest for easy adjustments
without needing to redesign other portions of the layout that
may define other unrelated operations. By separately repre
senting layers (e.g., material layers) in Such stack structures,
a relatively small amount of GUI real estate is needed to
provide a significant and potentially complex amount of
information. In one illustrative example (as shown in the
figure), the GUI 200 includes distinct regions for representing
a stack structure and a portion for a node based graph, which
represents operations associated with the layers of the stack
(e.g., for calculating respective data input values for the lay
ers). In this implementation, a rectangular shaped portion 202
is allocated for representing one or more multi-layer stack
structures. For example, an illustrated Stack may represent
layers of a complex material for representing the appearance
of the material. Another portion of the GUI 200 (labeled
workspace 204) is relatively larger than the portion 202 of the
GUI and is allocated for presenting a workspace that repre
sents one or more editable node based graphs that define
operations that are typically associated with material layers
represented in the stack (e.g., to calculate input data values
associated with material layers such a material properties). In
this example, another portion of the GUI 200 provides an area
206 for representing data sources that provide data for the
operations executed by the node based graph, for the stack
layers, etc. For example, images, numerical data sets and
other type of information may be represented in the area 206
of the GUI 200 and used in operations (e.g., represented in the
workspace 204) to produce the input data (e.g., property
values) for one or more stack layers or directly provided to the
stack layers represented in the portion 202.

Additional information may also be represented and pre
sented in the GUI 200. For example, various parameters asso
ciated with inputs, outputs, data sources, operations (e.g.,
effect trees), stack layers etc. may be graphically represented
in an adjustable form. Sliding scales, data entry fields, radio
buttons and other types of graphical objects may be used to
represent and change parameter values and other information
related to data sources, processing operations, stack layers,
etc. As illustrated in the figure, a portion 208 of the GUI 200

US 8,793,599 B1
5

contains a number of fields and other graphical objects for
representing such parameters. In general, the area 206 (that
represents data sources), the workspace 204 and the portion
202 (for representing a multi-layer stack) are arranged in the
GUI 200 such that data generally flows from the viewer's left
to right. However, data flows in one or more other directions
may also be implemented. In addition to using a single GUI
(such as GUI 200), multiple GUIs may be implemented for
presenting multiple stacks (e.g., that each contains multiple
material layers) and corresponding graphs (e.g., referred to as
effect trees in some instances) for executing associated opera
tions. In one arrangement, multiple GUIs may share a com
mon stack. For example, multiple GUIs may be used for
providing comprehensible and easily adjustable multi-di
mensional stacks (e.g., two-dimensional, three-dimensional
stack, etc.) (e.g., with multiple layers) and corresponding
node based graphs of associated operations (e.g., effect trees).

Referring to FIG. 3, portions of a GUI 300 (similar to the
GUI 200 shown in FIG. 2) are populated with graphical
elements to represent a relatively simplistic node graph and
stack structure. For illustrative purposes, the stack structure is
represented by a single-layer Stack container 302 in one por
tion of the GUI (that corresponds to the portion 202 shown in
FIG. 2). In this example, the stack container 302 includes a
material layer 303 that includes multiple inputs for represent
ing the appearance of a material (e.g., a car paint material).
Two of the inputs 304, 306 (identified as diffuse gain and
refection color) are associated with two parameters for defin
ing the appearance of the material layer. Such parameters may
be represented by one or more quantities, functions, etc. As
represented in portion 308 of the GUI, two respective data
sources are represented (with graphical icons 310, 312) as
having been retrieved, for example, from a data library. To
layout processing operations for calculating data values for
the inputs 302,304 included in the stacklayer, graphical icons
314, 316 are presented in a workspace 318 (that is similar to
the workspace 204 shown in FIG. 2), that correspond to the
icons 310, 312 in the GUI portion 308. In this particular
example, each of the data sources map directly to the respec
tive inputs of the single material layer 303 (e.g., labeled “car
paint mat”) included in the stack. Respectively, two dashed
lines 320, 322 graphically represent the established direct
connections between the icons 314, 316 and corresponding
inputs 304, 306 of the single layer of the stack 302. In this
example, connectivity between the data Sources and inputs is
established such that name of a data source (e.g., “difGain” of
icons 314, and, “reflCol” of icons 316) is directly connected
to an input that has a similar or equivalent name (e.g., "diffuse
gain” of input 304, and, “reflection color of input 306). As
Such, connections can be automatically established based
upon names and naming conventions. Further, by using
names to establish connections, Sources and/or inputs can be
relatively quickly Swapped out by adjusting data Source and
input names rather than laboriously re-wiring connections
between icons representing newly introduced data sources
and Stack inputs, thereby reducing development time and
allowing for efficient editing cycles. While the operations
illustrated in the workspace 318 of GUI 300 may be consid
ered relatively simplistic, the workspace and the stack (and
interactions between the two) can be used for more complex
layout and processing schemes (e.g., to simulate the appear
ance of materials). Further, while this example illustrates six
inputs being associated with the single material layer of the
stack 302, more or less inputs may be used with the single
layer or more layers added to the stack.

Referring to FIG. 4, a GUI 400 is illustrated that includes
portions (e.g., a workspace 402, a single-layer stack structure

10

15

25

30

35

40

45

50

55

60

65

6
404, a portion 406 for presenting data sources, etc.) similar to
the GUI 300 (shown in FIG.3). In this particular example, the
workspace 402 illustrates three icons that represent data
sources that are also represented in the portion 406 of the GUI
and are used for representing the appearance of a material
(e.g., car paint). One icon 408 (labeled “reflGain”) represents
a reflective gain data set while another icon 410 (labeled
“specBW) represents specular bandwidth data and a third
icon 412 (labeled “specCol') is associated with specular
color. In this example, each of the three data sources is used to
provide data to corresponding inputs of the single layer rep
resented in the stack 404 (similar to the data provided to the
stack 302 shown in FIG.3). However, rather than establishing
a direct link between the icons 408, 410, 412 and the inputs
represented in the stack 404 (namely inputs 436,438, 440), a
node based graph 414 is included in the workspace 402 to
represent a series of operations for processing the source data
(represented by the icons 408, 410, 412) prior to being pro
vided as inputs to the stack. In this particular example, each of
the icons 408, 410, 412 are respectively connected to input
nodes 416,418, 420 of the graph 414. In some instances input
nodes may be considered as resolved connections, for
example, the input node 416 is used for resolving “reflGain'
data and establishes a connection with the icon 408 (that
corresponds to the “reflGain’ data source). Processing of
each data set includes a series of additional operations (as
represented by graphical elements 422, 424, 426, 428 and
referred as effect operators in some instances). In general,
connections included in the graph 414 can be considered
explicit and not resolved (e.g., a direct connection). Such
explicit connections are represented with Solid lines, in this
example, while dashed lines represent resolved connections.
To illustrate the use of a constant value, inputs for some of the
graphical elements 422, 426, 428 are represented as being
unconnected, while inputs for one graphical element 424 are
both connected to input data sets to represent the use of data
that may not be invariant. Name resolved connections are
illustrated as being established (as represented by dashed
lines 430, 432, 434) between corresponding outputs of the
graphical elements 424, 426, 428 and inputs 436, 438, 440
(that respectively represent quantities labeled “reflection
gain”, “spec gain, and “spec color) of the single layer
represented in the stack 404. For example, input 436 is used
for resolving the “reflGain’ data and establishes a connection
with a corresponding output (labeled “reflGain”) of the graph
414. While a relatively simple operator (e.g., an addition
operator) is used in a few instances in this example, various
other types of operators may also be used separately or in
combination with the presented operators. For example, other
mathematical operators (e.g., Subtraction, multiplication,
division, etc.), statistical operators (e.g., mean, standard
deviation, variance, etc.) and other types of processing opera
tors (e.g., logical operators, domain transformations, etc.)
may be used for preparing data for the inputs of the layer
represented in the stack 404. As can be imagined, as the
number of layers increase (e.g., to simulate a large number of
material layers), the size of the stack may become visually
cumbersome and even distracting for a user. One or more
techniques may be used to reduce the visual distractions of an
overly complex Stack. For example one or more nesting tech
niques may be implemented for segmenting the stack (to
compartmentalize the different layers of a material). Further,
by allowing the layers of the stack to expand (and alterna
tively collapse), the user may be able to adjust the information
being presented by the GUI and provide a navigable interface
that is less distracting and more efficiently laid out for a user
to identify and focus upon a particular portion of graphically

US 8,793,599 B1
7

represented processing operations and Stack layers. Along
with manipulating and adjusting the stack to provide easily
identifiable and comprehensible layers (e.g., a material layer
to be represented), graphical elements represented in the
workspace may also be adjustable to provide a more efficient
interface for the user. For example, as layers of the stack are
expanded and collapsed, presentations of corresponding
node-based graphs or graph portions may adjusted for effi
cient use of the GUI and to provide a more digestible view to
a U.S.

Referring to FIG. 5, another GUI 500 is presented that
illustratively demonstrates collapsible and expandable por
tions of the interface. For example, two or more graphs may
be combined to produce a single graph that may reduce the
amount of GUI real estate needed while providing function
ality that is equivalent to each of the individual graphs. In this
example a graph. 502 is presented that is combines two sepa
rate graphs. As highlighted by a dashed-line box 504, one
portion of the graph. 502 contains graphical elements of the
graph 414 (shown in FIG. 4) and a second dashed-line box
506 contains additional graph elements for operations asso
ciated with other inputs to a layer (e.g., car paint layer) of a
stack 508 that also includes other material layers (e.g., labeled
“scratches mat” and “bump mat”). In this example, the graph
highlighted by box. 504 provides operations for three inputs
(e.g., labeled “reflection gain”, “spec gain, and 'spec color)
to the car paint material layer of the stack 508, as represented
by three dashed lines 510, 512, 514. Along with correspond
ing to the dashed lines 430, 432, 434 shown in FIG. 4, the
dashed lines 510,512, 514 also represent the associated con
nections are based on resolved names (e.g., output of graph
504 labeled “specGain” is connected to input 523 that is
labeled “spec gain, and, the graph output labeled “specCol'
is connected to input 525 that is labeled “spec color). Simi
larly, as illustrated with dashed lines 516, 518, the newly
added upper portion of the graph. 502 establishes named
resolved connections with two other inputs to the car paint
layer included in the stack 508. In this particular example, the
newly established name-resolved connections provide data to
respective layer inputs 520, 522 labeled “reflection color” (as
represented with dashed line 518) and “diffuse color” (repre
sented dashed line 516) from corresponding outputs of the
graph 502 labeled “reflCol” and “difCol'. Along with estab
lishing additional name-resolved connections to the graph
502, another input 524 (labeled “diffuse gain”) for the car
paint layer included in the stack establishes a name-resolved
connection to a data source 526 names “difGain” by directly
docking an icon that represents the data source to the input. As
Such, name resolved data sources may be directly provided to
one or more inputs of layers (e.g., material layers) included in
a stack without being processed by operations represented in
a graph. Along with establishing additional connections for
providing more inputs to a layer included in a stack (e.g., the
stack 508), additional layers may be added to a stack. For
example, layers may be appended to a stack (e.g., the top of
the stack, the bottom of the stack), inserted between current
layers, etc. Other types of stack based operations may also be
executed (e.g., as directed by a user), for example, a stack
layer may be deleted, replaced with another layer, combined
with one or more other layers, moved to be nested under
another layer, etc. In the illustrated example, two additional
material layers have been added to the stack 508 compared to
the stack 404 presented in FIG. 4. Along with one material
layer 528 associated with defining a scratch layer within the
overall material stack, another layer 530 defines a bump layer
(e.g., to provide a pox marked appearance to the material
defined by the stack). As shown in the figure, both of these

10

15

25

30

35

40

45

50

55

60

65

8
added layer 528,530 are presented as closed representations
and do not present any corresponding data inputs for the
layers. However, by selecting either (or both) of the material
layers (e.g., with a pointing device), the representation may
be expanded to expose corresponding input or inputs, e.g., for
defining properties associated with the respective material
layer (e.g., Scratch patterns, average bump height and distri
bution, etc.). By allowing the various layers and layer inputs
to be somewhat hidden, less GUI real estate is used until a
user decides to expose the inputs for inspection and other
actions (e.g., to establish connections with one or more
graphs).
Along with conserving GUI real estate by presenting a

stack 508 (and/or portions of a stack) capable of being
expanded and compressed (e.g., as directed by a user pointing
device), other graphical elements represented in the GUI 500
may also be presented in forms for saving space and reduce
visual clutter. For example, Sources that provide data to
graphs and other elements (e.g., input to layers of the stack
508) presented in the GUI 500 may be represented with a
reduced graphical footprint. In this illustration, each of data
sources 530-540 connected with docked connections to the
graph. 502 are shown with reduced size icons. Similarly, the
workspace includes four other sources 542-548 that provide
data that represent distinct colors (e.g., red, green, blue, no. 18
grey) that provide an invariant color to any portion of a Sur
face to which the color is applied. Being represented by such
a reduced size footprints, the Sources can be manipulated
relatively easily for being placed in various locations of the
workspace. For example, the sources 542-548 may be directly
connected to the graph. 502 for providing data that represents
the respective colors for processing by operators included in
graph.

Referring to FIG. 6, a graphical layout 600 that includes
multiple graph instances (e.g., effect tree) 602, 604, 606 and
a multi-layer stack 608 is presented for simulating the appear
ance of a material. Included with the multiple graph instances
602-606 presented in the layout 600 is the graph 500 shown in
FIG. 5. Along with the layers and associated inputs included
in the stack 508 shown in FIG. 5 (e.g., a scratched material
layer, a bumpy material layer, a carpaint layer), the stack 608
also includes some additional layers (e.g., a rust material
layer, a dirt material layer and a bullet impact layer) and
correspondingly nested inputs (e.g., in which the inputs to a
material layer may number in the hundreds). Without consid
erably disrupting other layers in the stack 602, these newly
introduced layers may be efficiently appended, inserted, etc.
into the stack. Further, in Some arrangements, outputs of an
effect tree may be consumed by several effect tree inputs (e.g.,
of different or the same tree), a number of material layer
inputs, combinations of effect tree inputs and material layer
inputs, etc. Once residing in the Stack 608, connections can be
established between the additional layers and the appropriate
graph instances (e.g., effect trees) as represented with dashed
lines. Various types of conventions may be used to form Such
connections between graphs and stacks. For example, similar
naming conventions between graph outputs and Stack inputs
may be used to establish connections. By assigning similar
names (e.g., names that match) to outputs of a graph and
inputs of an associated material layer, an established connec
tion may be used to direct data values calculated by graph to
the appropriate material layer input. As such, connections
may be established in a relatively automatic manner, and a
pointing device (or through another type of user directed
technique) is not needed to extend the connection from the
graph output to the material layer input. By using such con
ventions, connections between graphs and stacks can be con

US 8,793,599 B1

sidered as not being fixed, but considered resolved since
modification can be applied at different stages during the
creative cycle (e.g., resolved just-in-time'). As such, graphs
may be replaced with other graphs so long as the graph
output/material layer input naming convention is followed.
For example, one graph (that includes one set of operators)
may be replaced with another graph (that includes a different
set of operators) without adjusting connections to a stack so
long as the output(s) of the new graph follow the naming
convention of the output(s) of the graph being replaced. In
Some arrangements, such replacements may be based upon
one or more types of rules. For example, the version of agraph
(e.g., effect tree), data source, etc. used to connect to a stack
may be based upon a predefined priority. As such, a graph,
data source, etc. assigned a higher priority (compared to
similar graphs, data sources, etc.) may be identified for inser
tion and connecting with a stack. As such, similar to being
able to efficiently add, delete, and replace layers included in a
stack, graphs may also be efficiently added, deleted and
replaced without needing to painstakingly re-establish con
nections between the newly introduced graphs and appropri
ate layer(s) included in the stack.

Along with storing individual graphs and Stacks (e.g., to
produce a library) for later retrieval and use, individual mate
rial layers and effect trees may also be stored as assets. Fur
ther, a combination of a layer and an associated effect tree
(that provides calculated output data for the input of the layer)
may be stored as an asset. As such, the asset (e.g., combina
tion layer and effect tree) may be appropriately inserted for
providing a stack layer and corresponding graph for use in
other applications (e.g., to insert another material layer in
another material appearance simulation). For example, a dirt
material layer may be applied over a metallic material, later,
the same dirt material layer may be applied over a wood layer.

The stack 608 provides a significant amount of visual infor
mation for digitally representing the appearance of a material
while not needing a considerable amount of real estate (of a
GUI). Further, combined with the functionality provided by
the processing operations of the graphs, the layout 608 is
presented in an organized two-dimensional form that may
allow for quick inspection by a user, e.g., for efficiently iden
tifying one or more areas in need of attention (e.g., adjust
ment, further development, etc.). Further, by implementing a
stack and graph in concert, each may considerably comple
ment the other while significantly reducing layout need by
either individually to digitally represent the appearance of a
material.

Referring to FIG. 7, a flowchart 700 represents operations
of a computing device Such as the computer system 102
(shown in FIG. 1) to produce a graphical user interface that
includes a navigable workspace for laying out graphs and
associated graphical elements that represent operational com
ponents for processing data sources. A multi-layer stack is
also represented in the interface for defining layers of an
object Such as a simulated material that uses the data pro
cessed by the graphs. Such operations are typically executed
by components (e.g., one or more processors) included in a
computing device, however, operations may be executed by
multiple computing devices. Along with being executed at a
single site (e.g., at the location of the computing device),
operations execution may be distributed among two or more
locations.

Operations of the computing device may include defining
702 a portion of a display for presenting graphical elements
that represent processing operations to define properties of an
object. For example, one or more graphs may be presented
that represent processing operations for defining properties

5

10

15

25

30

35

40

45

50

55

60

65

10
for simulating the appearance of one or more materials.
Operations may also include defining 704 a portion of the
display for a graphical stack that uses the properties to define
layers (e.g., material layers) associated with the object. For
example, the stack may define individual layers and layer sets
for defining different portions of the material being simu
lated. Paint and rust layers may be defined along with layers
to provide patterns of scratches and bumps. Some layers may
even use properties (e.g., colors, specular patterns, etc.) for
defining layers associated with the environment in which the
simulated material is located (e.g., define a layer of dirt or
Snow to be positioned upon the simulated material). Opera
tions may also include simultaneously presenting 706 the
graphical elements and the graphical stack on the display. By
presenting both, a user interface may provide a single orga
nized view of a potentially complex collection of processing
operations and the relationship of layers of an object that are
defined by the operations. Along with simulating the appear
ance of materials, various other types of applications may
implement one or more of these techniques. For example,
other types of presentations that include significant amounts
of detailed information that can be organized into layers may
be processed by one or more operational graphs and incorpo
rated into one or more multi-layer stacks.

FIG. 8 is a block diagram of computing devices that may be
used and implemented to perform operations associated with
producing and presenting editable user interfaces that include
multi-layer stacks and graphs that represent processing
operations. As such, the computing devices may provide
operations similar to computer systems, servers, etc. Com
puting device 800 can also represent various forms of digital
computers, such as laptops, desktops, workstations, personal
digital assistants, servers, blade servers, mainframes, and
other appropriate computers.
Computing device 800 includes a processor 802, memory

804, a storage device 806, a high-speed interface 808 con
necting to memory 804 and high-speed expansion ports 810,
and a low speed interface 812 connecting to low speed bus
814 and storage device 806. Each of the components 802.
804, 806, 808, 810, and 812, are interconnected using various
busses, and can be mounted on a common motherboard or in
other manners as appropriate. The processor 802 can process
instructions for execution within the computing device 800,
including instructions stored in the memory 804 or on the
storage device 806 to display graphical information for a GUI
on an external input/output device, such as display 816 (e.g.,
a touch screen, a multi-touch screen) coupled to high speed
interface 808. In other implementations, multiple processors
and/or multiple buses can be used, as appropriate, along with
multiple memories and types of memory. Also, multiple com
puting devices 800 can be connected, with each device pro
viding portions of the necessary operations (e.g., as a server
bank, a group of blade servers, or a multi-processor system).
The memory 804 stores information within the computing

device 800. In one implementation, the memory 804 is a
computer-readable medium. In one implementation, the
memory 804 is a volatile memory unit or units. In another
implementation, the memory 804 is a non-volatile memory
unit or units.
The storage device 806 is capable of providing mass stor

age for the computing device 800. In one implementation, the
storage device 806 is a computer-readable medium. In vari
ous different implementations, the storage device 806 can be
a floppy disk device, a hard disk device, an optical disk
device, or a tape device, a flash memory or other similar solid
state memory device, oranarray of devices, including devices
in a storage area network or other configurations. In one

US 8,793,599 B1
11

implementation, a computer program product is tangibly
embodied in an information carrier. The computer program
product contains instructions that, when executed, perform
one or more methods, such as those described above. The
information carrier is a computer- or machine-readable
medium, such as the memory 804, the storage device 806,
memory on processor 802, or the like.
The high speed controller 808 manages bandwidth-inten

sive operations for the computing device 800, while the low
speed controller 812 manages lower bandwidth-intensive
operations. Such allocation of duties is exemplary only. In
one implementation, the high-speed controller 808 is coupled
to memory 804, display 816 (e.g., through a graphics proces
sor or accelerator), and to high-speed expansion ports 810,
which can accept various expansion cards (not shown). In the
implementation, low-speed controller 812 is coupled to stor
age device 806 and low-speed expansion port 814. The low
speed expansion port, which can include various communi
cation ports (e.g., USB, Bluetooth, Ethernet, wireless
Ethernet) can be coupled to one or more input/output devices,
Such as a keyboard, a pointing device, a scanner, tablet input,
spatial input device, or a networking device Such as a Switch
or router, e.g., through a network adapter.
The computing device 800 can be implemented in a num

ber of different forms, as shown in the figure. For example, it
can be implemented as a standard server 820, or multiple
times in a group of such servers. It can also be implemented as
part of a rack server system 824. In addition, it can be imple
mented in a personal computer Such as a laptop computer 822.
Alternatively, components from computing device 800 can be
combined with other components in a mobile device (not
shown). The computing device 800 may also be implemented
for network based (e.g., web based) operations such as for
cloud computing.

Embodiments of the subject matter and the functional
operations described in this specification can be implemented
in digital electronic circuitry, or in computer software, firm
ware, or hardware, including the structures disclosed in this
specification and their structural equivalents, or in combina
tions of one or more of them. Embodiments of the subject
matter described in this specification can be implemented as
one or more computer program products, i.e., one or more
modules of computer program instructions encoded on a
computer-readable medium for execution by, or to control the
operation of data processing apparatus. The computer-read
able medium can be a machine-readable storage device, a
machine-readable storage Substrate, a memory device, a com
position of matter affecting a machine-readable propagated
signal, or a combination of one or more of them. The term
"data processing apparatus' encompasses all apparatus,
devices, and machines for processing data, including by way
of example a programmable processor, a computer, or mul
tiple processors or computers. The apparatus can include, in
addition to hardware, code that creates an execution environ
ment for the computer program in question, e.g., code that
constitutes processor firmware, a protocol stack, a database
management system, an operating system, or a combination
of one or more of them.
A computer program (also known as a program, Software,

Software application, Script, or code) can be written in any
form of programming language, including compiled or inter
preted languages, and it can be deployed in any form, includ
ing as a stand-alone program or as a module, component,
Subroutine, or other unit Suitable for use in a computing
environment. A computer program does not necessarily cor
respond to a file in a file system. A program can be stored in
a portion of a file that holds other programs or data (e.g., one

10

15

25

30

35

40

45

50

55

60

65

12
or more scripts stored in a markup language document), in a
single file dedicated to the program in question, or in multiple
coordinated files (e.g., files that store one or more modules,
Sub-programs, or portions of code). A computer program can
be deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a communication net
work.
The processes and logic flows described in this specifica

tion can be performed by one or more programmable proces
sors executing one or more computer programs to perform
functions by operating on input data and generating output.
The processes and logic flows can also be performed by, and
apparatus can also be implemented as, special purpose logic
circuitry, e.g., an FPGA (field programmable gate array) or an
ASIC (application-specific integrated circuit).

Processors suitable for the execution of a computer pro
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read-only memory or a
random access memory or both. The essential elements of a
computer are a processor for performing instructions and one
or more memory devices for storing instructions and data.
Generally, a computer will also include, or be operatively
coupled to receive data from or transfer data to, or both, one
or more mass storage devices for storing data, e.g., magnetic,
magneto-optical disks, or optical disks. However, a computer
need not have such devices. Moreover, a computer can be
embedded in another device, e.g., a mobile telephone, a per
sonal digital assistant (PDA), a mobile audio player, a Global
Positioning System (GPS) receiver, to name just a few. Com
puter-readable media Suitable for storing computer program
instructions and data include all forms of non-volatile
memory, media and memory devices, including by way of
example semiconductor memory devices, e.g., EPROM,
EEPROM, and flash memory devices; magnetic disks, e.g.,
internal hard disks or removable disks; magneto-optical
disks; and CD-ROM and DVD-ROM disks. The processor
and the memory can be Supplemented by, or incorporated in,
special purpose logic circuitry.
Embodiments of the subject matter described in this speci

fication can be implemented in a computing system that
includes a back-end component, e.g., as a data server, or that
includes a middleware component, e.g., an application server,
or that includes a front-end component, e.g., a client com
puter having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the Subject matter described is this specification, or any com
bination of one or more such back-end, middleware, or front
end components. The components of the system can be inter
connected by any form or medium of digital data
communication, e.g., a communication network. Examples
of communication networks include a local area network
(“LAN”) and a wide area network (“WAN), e.g., the Inter
net.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

While this specification contains many specifics, these
should not be construed as limitations on the scope of the
invention or of what may be claimed, but rather as descrip
tions of features specific to particular embodiments of the
invention. Certain features that are described in this specifi

US 8,793,599 B1
13

cation in the context of separate embodiments can also be
implemented in combination in a single embodiment. Con
versely, various features that are described in the context of a
single embodiment can also be implemented in multiple
embodiments separately or in any suitable Subcombination.
Moreover, although features may be described above as act
ing in certain combinations and eveninitially claimed as such,
one or more features from a claimed combination can in some
cases be excised from the combination, and the claimed com
bination may be directed to a subcombination or variation of
a Subcombination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain circum
stances, multitasking and parallel processing may be advan
tageous. Moreover, the separation of various system compo
nents in the embodiments described above should not be
understood as requiring such separation in all embodiments,
and it should be understood that the described program com
ponents and systems can generally be integrated together in a
single software product or packaged into multiple Software
products.

Thus, particular embodiments of the invention have been
described. Other embodiments are within the scope of the
following claims. For example, the actions recited in the
claims can be performed in a different order and still achieve
desirable results.

What is claimed is:
1. A computer-implemented method for graphically repre

senting processing operations for layers applied to a simu
lated material object, the method comprising:

defining a first portion of a display as a workspace for
presenting first graphical elements, wherein:
the first graphical elements comprise:

one or more graphical elements representing data
Sources; and

one or more graphical elements representing the pro
cessing operations that are performed using the one
or more data sources as inputs to generate outputs
that define layer properties for the layers applied to
the simulated material object; and

the one or more graphical elements representing data
Sources and the one or more graphical elements rep
resenting processing operations are visually repre
sented as a node-based graph that defines a data flow;

defining a second portion of the display, different from the
first portion, for presenting a graphical stack comprising
second graphical elements and third graphical elements,
wherein:
each of the second graphical elements represents one of

the layers applied to the simulated material object
according to an ordering of the second graphical ele
ments in the graphical stack;

each of the graphical third elements represents param
eters for defining an appearance of respective layers,
and the graphical third elements are collapsible pre
sented in the graphical stack below graphical second
elements representing the respective layers; and

each of the layers alters an appearance of the simulated
material object; and

simultaneously presenting the first portion of the display
and the second portion of the display on a display device,
such that the outputs of the node-based graph in the first
portion of the display are graphically associated with

10

15

25

30

35

40

45

50

55

60

65

14
graphical third elements representing corresponding
parameters in the second portion of the display.

2. The computer-implemented method of claim 1, further
comprising:

adding a graphical element onto the graphical stack for
introducing a new layer for the simulated material
object.

3. The computer-implemented method of claim 2, wherein
adding the graphical element includes appending the graphi
cal element to the graphical stack.

4. The computer-implemented method of claim 2, wherein
adding the graphical element includes inserting the graphical
element into the graphical Stack.

5. The computer-implemented method of claim 1, wherein
the association is established based upon a naming conven
tion used by an input to the layer represented in the graphical
stack and one of the one or more data sources.

6. The computer-implemented method of claim 1, wherein
the association is established based upon a priority associated
with a processing operation.

7. The computer-implemented method of claim 1, wherein
adjustable parameters are associated with the processing
operations.

8. The computer-implemented method of claim 1, wherein
the node-based graph is visually compressible.

9. The computer-implemented method of claim8, wherein
the node-based graph is expanded from a visually com
pressed version of the node-based graph.

10. A system comprising:
a memory configured to store instructions; and
one or more processors configured to execute the instruc

tions to perform a method comprising:
defining a first portion of a display as a workspace for

presenting first graphical elements, wherein:
the first graphical elements comprise:

one or more graphical elements representing data
Sources; and

one or more graphical elements representing the
processing operations that are performed using
the one or more data sources as inputs to gener
ate outputs that define layer properties for the
layers applied to the simulated material object;
and

the one or more graphical elements representing data
Sources and the one or more graphical elements
representing processing operations are visually
represented as a node-based graph that defines a
data flow;

defining a second portion of the display, different from
the first portion, for presenting a graphical stack com
prising second graphical elements and third graphical
elements, wherein:
each of the second graphical elements represents one

of the layers applied to the simulated material
object according to an ordering of the second
graphical elements in the graphical stack;

each of the graphical third elements represents param
eters for defining an appearance of respective lay
ers, and the graphical third elements are collapsible
presented in the graphical stack below graphical
second elements representing the respective layers;
and

each of the layers alters an appearance of the simu
lated material object; and

simultaneously presenting the first portion of the display
and the second portion of the display on a display
device. Such that the outputs of the node-based graph

US 8,793,599 B1
15

in the first portion of the display are graphically asso
ciated with graphical third elements representing cor
responding parameters in the second portion of the
display.

11. The system of claim 10, wherein the processor is con
figured to execute the instructions to add a graphical element
onto the graphical stack for introducing a new layer for the
simulated material object.

12. The system of claim 11, wherein adding the graphical
element includes appending the graphical element to the
graphical stack.

13. The system of claim 11, wherein adding the graphical
element includes inserting the graphical element into the
graphical stack.

14. The system of claim 10, wherein the association is
established based upon a naming convention used by an input
to the layer represented in the graphical Stack and one of the
one or more data sources.

15. The system of claim 10, wherein the association is
established based upon a priority associated with a processing
operation.

16. The system of claim 10, wherein adjustable parameters
are associated with the processing operations.

17. The system of claim 10, wherein the node-based graph
is visually compressible.

18. The system of claim 10, wherein the node-based graph
is expanded from a visually compressed version of the node
based graph.

19. A computer program product tangibly embodied in a
non-transitory computer-readable medium and comprising
instructions that when executed by one or more processors
cause the one or more processors to perform a method com
prising:

defining a first portion of a display as a workspace for
presenting first graphical elements, wherein:
the first graphical elements comprise:

one or more graphical elements representing data
Sources; and

one or more graphical elements representing the pro
cessing operations that are performed using the one
or more data sources as inputs to generate outputs
that define layer properties for the layers applied to
the simulated material object; and

the one or more graphical elements representing data
Sources and the one or more graphical elements rep
resenting processing operations are visually repre
sented as a node-based graph that defines a data flow;

10

15

25

30

35

40

45

16
defining a second portion of the display, different from the

first portion, for presenting a graphical stack comprising
second graphical elements and third graphical elements,
wherein:
each of the second graphical elements represents one of

the layers applied to the simulated material object
according to an ordering of the second graphical ele
ments in the graphical stack;

each of the graphical third elements represents param
eters for defining an appearance of respective layers,
and the graphical third elements are collapsible pre
sented in the graphical stack below graphical second
elements representing the respective layers; and

each of the layers alters an appearance of the simulated
material object; and

simultaneously presenting the first portion of the display
and the second portion of the display on a display device,
such that the outputs of the node-based graph in the first
portion of the display are graphically associated with
graphical third elements corresponding parameters in
the second portion of the display.

20. The computer program product of claim 19, further
including instructions that when executed by the processor
perform a method comprising:

adding a graphical element onto the graphical stack for
introducing a new layer for the simulated material
object.

21. The computer program product of claim 20, wherein
adding the graphical element includes appending the graphi
cal element to the graphical stack.

22. The computer program product of claim 20, wherein
adding the graphical element includes inserting the graphical
element into the graphical stack.

23. The computer program product of claim 19, wherein
the association is established based upon a naming conven
tion used by an input to the layer represented in the graphical
stack and one of the one or more data sources.

24. The computer program product of claim 19, wherein
the association is established based upon a priority associated
with a processing operation.

25. The computer program product of claim 19, wherein
adjustable parameters are associated with the processing
operations.

26. The computer program product of claim 19, wherein
the node-based graph is visually compressible.

27. The computer program product of claim 19, wherein
the node-based graph is expanded from a visually com
pressed version of the node-based graph.

k k k k k

