
USOO8943442B1

(12) United States Patent (10) Patent No.: US 8,943,442 B1
Oberheu (45) Date of Patent: Jan. 27, 2015

(54) CONTROLLING OPERATIONS FOR 8,010,910 B2 * 8/2011 Wright et al. 71.5/854
EXECUTION 8,280,179 B2 * 10/2012 Lin 38.2/240

8,516,385 B1* 8/2013 Eismann et al. ... 715,763
8,549,407 B2 * 10/2013 O’Neil Garcia ... 715.738

(75) Inventor: Kent Oberheu, Berkeley, CA (US) 8,769,421 B2 * 7/2014 Meaney et al. 715/756
2002fOO32697 A1 3/2002 French et al.

(73) Assignee: Lucasfilm Entertainment Company 2003/0172078 A1* 9/2003 Stumpf TO7/100
Ltd., San Francisco, CA (US) 2003/0197738 A1* 10, 2003 Beit-Zuri et al. 345,786

2003/0218634 A1 1 1/2003 Kuchinsky et al.
c - r 2004/0169688 A1* 9, 2004 Burdick et al. 345,854

(*) Notice: Subject to any distic the t 2005/0234979 A1* 10, 2005 Martineau et al. 707/103 X
patent 1s extended or adjusted under 2005/0278351 A1* 12/2005 Niyogi et al. ... TO7/100
U.S.C. 154(b) by 1064 days. 2006/O123361 A1* 6/2006 Sorin et al. 71.5/854

(21) Appl. No.: 12/953,136 (Continued)
OTHER PUBLICATIONS

(22) Filed: Nov. 23, 2010
Audiovisual Panorama"The Foundry Nuke Starts Selling 5.2”. Aug.

Related U.S. Application Data focus Art Ro?s:Allis N.
(63) Continuation-in-part of application No. 12/756,046, foundry-nuke-5-February on Jul. 1, 2011, 2 pages.

filed on Apr. 7, 2010. (Continued)
(60) Provisional application No. 61/284.475, filed on Dec.

21, 2009. Primary Examiner — Matt Kim
Assistant Examiner — Yongiia Pan 9.

(51) Int. Cl. (74) Attorney, Agent, or Firm — Kilpatrick Townsend &
G06F 3/048 (2013.01) Stockton LLP

(52) U.S. Cl.
USPC 715/854; 715/810; 715/825: 715/841; (57) ABSTRACT

715/853; 715/855 A computer-implemented method of controlling operations
(58) Field of Classification Search for execution includes displaying, in a display device area that

None lication file f 1 hhi controls a process of operations, a current container providing
See application file for complete search history. at least a first operation to the process, and a linear sequence

representing parent containers of the current container orga
(56) References Cited nized in a hierarchy. The method includes receiving, in a

U.S. PATENT DOCUMENTS system generating the display device area, a partial-perfor
M mance request identifying a Subset of the parent containers

6,282,699 B1 8/2001 Zhang et al. defined between the current container and a level in the hier
6,298.474 B1 10/2001 Blowers et al. archy. The method includes performing, in response to the
6,606,105 B1* 8/2003 Quartetti 71.5/853 partial-performance request, the first operation and those of
S. 3. R 38: S. s the operations that the subset of the parent containers provide
7,290:26 Bf 10/2007 Kawahara et al. to the process.
7.463,263 B2 12/2008 Gilboa
7,640,517 B2 * 12/2009 Moehrle 715,855 18 Claims, 10 Drawing Sheets

206

2ff

2. G conger Ients (connes 202-C

US 8,943.442 B1
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2007/0162953 A1 7/2007 Bolliger et al.
2009/0063547 A1* 3/2009 Wright et al. 707/102
2010, 0070856 A1 3/2010 Behl et al. 715/704
2011/0276562 A1* 11, 2011 Madden-Woods et al. ... 707f722

OTHER PUBLICATIONS
Bragdon, “Code Bubbles: Rethinking the User Interface Paradigm of
Integrated Development Environments', downloaded from the
internet at: http://www.youtube.com/comment servlet?all com
ments&v=PsPXOnEIJOk on Apr. 7, 2010, 8 pages.
Bragdon, “Code Bubbles: Rethinking the User Interface Paradigm of
Integrated Development Environments', downloaded from the
internet at: http://www.youtube.com/watch?v=PsPXOnEIJOk on
Apr. 7, 2010, 2 pages.
Bragdon, “Code Bubbles: Rethinking the User Interface Paradigm of
Integrated Development Environment, Bubbles Metaphor”, down
loaded from the internet at: http://www.cs.brown.edu/people/acb?.
codebubbles details.htm on Apr. 7, 2010 2 pages.
Bragdon, “Code Bubbles: Rethinking the User Interface Paradigm of
Integrated Development Environment, FAQ, downloaded from the
internet at: http://www.cs.brown.edu/people/acb/codebubbles facq.
htm on Apr. 7, 2010 2 pages.
Bragdon, “Code Bubbles: Rethinking the User Interface Paradigm of
Integrated Development Environment, Overview”, downloaded from
the internet at: http://www.cs.brown.edu/people/acb/codebubbles
site.htm on Apr. 7, 2010 2 pages.
Johnson, “DJX Blog: Layering Shaders with MentalRay', Feb. 1.
2008, downloaded from the internet at: http://www.dx.com.au/blog/

2008/02/01/layering-shaders-with-mentalray on Jul. 1, 2011, 9
pageS.
Los Angeles Final Cut Pro User Group (undated screenshot from
product that was commercially available more than one year before
the priority date of this patent application), downloaded from the
internet at: http://www.lafcpug.org/images basic chroma
sample? ShakeScript2.jpg on Jun. 30, 2011, 1 page.
OpenMovie Editor (undated screenshot from product that was com
mercially available more than one year before the priority date of this
patent application), downloaded from the internet at: http://www.
openmovieeditor.org/images/node filters shadow.gag, on Jun. 30.
2011, 1 page.
Schultz. “Navigating with the Address Bar in Windows Vista's Win
dows Explorer', downloaded from the internet at: http://articles.
techrepublic.com.com/5100-10878 11-6116684.html on May 26,
2010, 6 pages.
The Foundry Visionmongers Ltd. “The Foundry at NAB 2011”, Apr.
12, 2011, downloaded from the internet at: http://www.thefoundry.
co.uk/articles/2011/04/12/240/the-foundrv-at-nab-2011/#NUKE on
Jul. 1, 2011, 5 pages.
...theprodukkt “...theprodukkt will make you happy” downloaded from
the internet at: http://www.theprodukkit.com/theprodukkton Oct. 14.
2009, 3 pages.
Wikipedia, "URL bar', downloaded from the internet at: http://web.
archive.org/web/2008.0122161603/http:/en.wikipedia.org/wiki/Ad
dress bar on Jun. 22, 2011, last modified on Dec. 24, 2007, 2 pages.
Konstantinos et al., The Khoros Software Development Environment
for Image and Signal Processing, May 1994, IEEE Transactions on
Image Processing, vol. 3, No. 3, pp. 243-252.

* cited by examiner

US 8,943,442 B1 Sheet 1 of 10 Jan. 27, 2015 U.S. Patent

US 8,943,442 B1 Sheet 2 of 10 Jan. 27, 2015 U.S. Patent

ZZZ

OZZ

US 8,943,442 B1 Sheet 3 of 10

Z02

Jan. 27, 2015

Z

#702

U.S. Patent

US 8,943,442 B1 Sheet 4 of 10 Jan. 27, 2015 U.S. Patent

US 8,943,442 B1 U.S. Patent

U.S. Patent Jan. 27, 2015 Sheet 6 of 10 US 8,943,442 B1

602
Display a Current Container

604
Receive a path reveal request

Display a first linear Sequence and a Second linear 606
Sequence

FIG. 6

U.S. Patent Jan. 27, 2015 Sheet 7 of 10 US 8,943,442 B1

to

Display a Current Container and a linear 702
Sequence

704
Receive a partial-performance request

706
Perform the first operation

FIG. 7

US 8,943,442 B1

QZ08

U.S. Patent

0209

9908

9:709

US 8,943,442 B1 Sheet 9 of 10 Jan. 27, 2015 U.S. Patent

U.S. Patent Jan. 27, 2015 Sheet 10 of 10 US 8,943,442 B1

N.A Y g g O

. . w

US 8,943,442 B1
1.

CONTROLLING OPERATIONS FOR
EXECUTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation-in-part of and claims the
benefit of U.S. patent application Ser. No. 12/756,046, filed
Apr. 7, 2010, which claims the benefit of U.S. Provisional
Application Ser. No. 61/284.475, filed Dec. 21, 2009, the
entire contents of both of which are incorporated herein by
reference.

TECHNICAL FIELD

This document relates to controlling operations for execu
tion.

BACKGROUND

User interfaces may provide a framework to a user for
controlling operations for execution of a process. Some
frameworks provide a visual representation of the operations.
If users must spend a great deal of time navigating the frame
work to locate a particular operation or Sub-operation of the
process, this results in lost productivity. In addition, theses
user interfaces may not provide a mechanism to select a
Sub-set of the operations for performance, or visually repre
sent the replication or cloning of an operation or sub-opera
tion within the process.

SUMMARY

This document describes systems and techniques by which
a user selects or otherwise controls one or more operations
that are to be executed, the user doing this by interacting with
content displayed on a screen. As described below, the con
tent can include hierarchically arranged containers represent
ing performable operations. When any container in the hier
archy is displayed, the “path of parent containers leading to
the container can be indicated by a linear sequence adjacent
the container. When there is more than one path to the current
container in the hierarchy, two (or more) linear sequences can
be shown, to illustrate this fact to the user. The user can also
drag the cursor from the displayed container and upward in
the path, to select an arbitrary group of containers in the path
whose operations to perform, rather than having the opera
tions of all containers be performed.

In a first aspect, a computer-implemented method of con
trolling operations for execution includes displaying, in a
display device area that controls a process of operations
defined by containers organized in a hierarchy, a current
container providing at least a first operation to the process;
receiving, in a system generating the display device area, a
path reveal request for the current container; and displaying,
adjacent the current container in the display device area and in
response to the path reveal request: a first linear sequence that
represents first parent containers of the current container cor
responding to a first path in the hierarchy; and a second linear
sequence that represents second parent containers of the cur
rent container corresponding to a second path in the hierar
chy.

Implementations can include any or all of the following
features. The method includes receiving, in the system, user
input corresponding to a hovering operation by a cursor
proximate to one of the parent containers in the first linear
sequence or the second linear sequence; and displaying, in the

10

15

25

30

35

40

45

50

55

60

65

2
display device area, each sibling item associated with the
parent container. The first path and the second path are dis
played parallel to each other. The first path is displayed nearer
the current container than the second path, based on the first
path having been used for navigating to the current container.
The process of operations is directed to the generation of at
least one composite image corresponding to the operations of
the first linear sequence or the second linear sequence. The
method includes receiving, in the system, user input corre
sponding to an isolation request for one of the parent contain
ers in one of the first linear sequence and the second linear
sequence; and displaying, in the display device area, the
parent container in isolation from a remainder of either the
first linear sequence or the second linear sequence. The
method includes receiving, in a system generating the display
device area, a partial-performance request for one of the first
and second linear sequences, the partial-performance request
identifying a Subset of the first or second parent containers
defined between the current container and a level in the hier
archy; and performing, in response to the partial-performance
request, the first operation and those of the operations that the
subset of the parent containers provide to the process. The
partial-performance request is received from at least one user
input device and is generated by a dragging operation starting
at the current container and ending at the level in the hierar
chy.

In a second aspect, a computer program product is tangibly
embodied in a computer-readable storage medium and
includes instructions that when executed by a processor per
form a method for controlling operations for execution, the
method comprising: displaying, in a display device area that
controls a process of operations defined by containers orga
nized in a hierarchy, a current container providing at least a
first operation to the process; receiving, in a system generat
ing the display device area, a path reveal request for the
current container; and displaying, adjacent the current con
tainer in the display device area and in response to the path
reveal request: a first linear sequence that represents first
parent containers of the current container corresponding to a
first path in the hierarchy; and a second linear sequence that
represents second parent containers of the current container
corresponding to a second path in the hierarchy.

Implementations can include any or all of the following
features. The method further includes: receiving, in a system
generating the display device area, a partial-performance
request for one of the first and second linear sequences, the
partial-performance request identifying a Subset of the first or
second parent containers defined between the current con
tainer and a level in the hierarchy; and performing, in
response to the partial-performance request, the first opera
tion and those of the operations that the subset of the parent
containers provide to the process. The partial-performance
request is received from at least one user input device and is
generated by a dragging operation starting at the current
container and ending at the level in the hierarchy.

In a third aspect, a computer program product is tangibly
embodied in a computer-readable storage medium, the com
puter program product including instructions that, when
executed, generate in a display device area a graphical user
interface for controlling operations for execution, the graphi
cal user interface comprising: a current container providing at
least a first operation to a process; a first linear sequence that
represents first parent containers of the current container
organized in a hierarchy and corresponding to a first path in
the hierarchy; a second linear sequence that represents second
parent containers of the current container organized in the
hierarchy and corresponding to a second path in the hierar

US 8,943,442 B1
3

chy; and a first input control for generating a path reveal
request for the current container; wherein the first linear
sequence and second linear sequence are displayed, in the
display device area, adjacent to the current container and in
response to the path reveal request.

Implementations can include any or all of the following
features. The graphical user interface further comprises: a
second input control responsive to a hovering operation by a
cursor proximate to one of the parent containers in the first
linear sequence or the second linear sequence; and a first
presentation control for displaying, in the display device area,
each sibling item associated with a parent container. The
graphical user interface further comprises: a third input con
trol responsive to user input corresponding to an isolation
request for one of the parent containers; and a second presen
tation control for displaying, in the display device area, the
parent container in isolation from a remainder of the first
linear sequence or the second linear sequence. The first path
and the second path are displayed parallel to each other. The
first path is displayed nearer the current container than the
second path, based on the first path having been used for
navigating to the current container. The process of operations
is directed to the generation of at least one composite image
corresponding to the operations of the first linear sequence or
the second linear sequence. The graphical user interface fur
ther comprises: a second input control for generating a par
tial-performance request for one of the first and second linear
sequences, the partial-performance request identifying a Sub
set of the first or second parent containers defined between the
current container and a level in the hierarchy. The second
input control is responsive to input from at least one user input
device generated by a dragging operation starting at the cur
rent container and ending at the level in the hierarchy.

Implementations can provide any or all of the following
advantages. The user can conveniently select only the desired
portions of the process they wish to perform. The graphical
user interface can intuitively represent a complex hierarchy of
items. The graphical user interface can intuitively represent
multiple paths to a root container in the container hierarchy.
The details of one or more implementations are set forth in

the accompanying drawings and the description below. Other
features and advantages will be apparent from the description
and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 shows an example representation of a container
presented in a graphical user interface that can control opera
tions for execution of a process.

FIGS. 2A and 2B show examples of revealing one or more
paths of an isolated container.

FIG.3 shows an example of displaying sibling items asso
ciated with a parent container.

FIG. 4 shows an example of receiving a partial-perfor
mance request.

FIG. 5 shows an example of expanding a container.
FIG. 6 shows an example technique for revealing a plural

ity of paths of an isolated container.
FIG. 7 shows an example technique that can be used with

the technique in FIG. 6.
FIGS. 8A-8D show examples of representations that may

be presented in the graphical user interface.
FIG. 9 shows an example of receiving a partial-perfor

mance request for one of the revealed paths of FIG. 2B.
FIG. 10 is a block diagram of a computing system that can

be used in connection with computer-implemented methods
described in this document.

5

10

15

25

30

35

40

45

50

55

60

65

4
Like reference symbols in the various drawings indicate

like elements.

DETAILED DESCRIPTION

FIG. 1 shows an example representation of a container 102
presented in a graphical user interface. In general, the graphi
cal user interface may be displayed on a display device.
Furthermore, the presented containers may control opera
tions for execution of a process. The containers control opera
tions for the process at least in the sense that including a
specific container in the process adds one or more functions
associated with that container to the process. In other words,
each container provides one or more operations to the pro
cess. In some implementations, the process may be an image
compositing process and each of the operations may be
directed to compositing a portion of the image. In other
implementations, another process can be controlled, such as a
computer-controlled manufacturing operation. Below will be
described examples of visualizing alternative paths that lead
to a container, so that each visualized path is interactive and
can be used for multiple purposes independently of which
path was actually used for navigating to the container.

Each of the operations is represented by a container in the
graphical user interface. In general, each of the containers
may include any number of items. In some implementations,
each item corresponds to either a container or a function. In
general, the functions may be configured to perform one or
more portions of a particular operation of the process. That is,
in some implementations, containers and functions are
defined as follows:

Containers have contents (i.e., one or more other items),
and functions do not.

Containers can be opened (e.g., to visualize the other
item(s)), and functions cannot.

However, other elements that are used to control operations
for execution of a process may also be presented. For
example, in some implementations, an item may be or other
wise include a mask which is performed prior to the one or
more operations represented by the item. Masks are described
in more detail below.

In general, a container may be a parent container or a
sibling container. For example, in Some implementations, a
parent container includes one or more sibling items, such as a
sibling container and/or one or more sibling functions. Fur
thermore, the parent container and sibling container designa
tions are not mutually exclusive. That is, for example, a con
tainer included in one parent container may also be a parent
container to a different collection of sibling items.
The graphical user interface may be used to present a

container according to a user selection. For example, here, the
presentation of the “Container expanded container 102 may
be in response to an isolation request according to received
user input from a pointing device (e.g., a mouse, stylus, or
other device), a keyboard, other user input devices, or com
binations of these.

In some implementations, the default state of a selected
container is that the container is open with its first level of
contents revealed. For example, the “Container expanded
container 102 is opened (e.g., the opened State is indicated by
the down-facing orientation of graphical user interface com
ponent 108a) showing that the container 102 includes the
unopened “Container collapsed” container 104 (e.g., the
unopened State is indicated by the right-facing orientation of
the graphical user interface component 108b). In some imple
mentations, if a container has no contents, it is closed by
default.

US 8,943,442 B1
5

The container 102 may include a number of input controls
that provide certain functionality to a user. For example, here
container 102 includes input controls 106, 110, 112, and 114.
Input control 110 can be used to close the container (e.g., hide
the container from view). Input control 112 may be used to
show information about an item. The type of information
revealed can be user assignable, accordingly to particular
implementations. Input control 114 opens or reveals a mask
container which applies to the container 102. In general,
expanding the container presents the contents of the container
(e.g., sibling items) in the graphical user interface. Expanding
a container in the graphical user interface is described in more
detail below.

In addition, a container may include an input control (e.g.,
input control 106) that may reveal a path to additional con
tainers in response to user input. For example, a path may be
revealed that appears similar to FIG. 2A or 2B in response to
receiving a click from a pointing device or a keyboard short
cut, to name two examples. In some implementations, the
path reveal input control 106 is only visible when a container
has been selected for isolation (e.g., when the “Container ex
panded container 102 has been selected for isolation).

FIGS. 2A and 2B show examples of revealing one or more
paths of an isolated container. For example, in reference to
FIG. 2A, path 202 may be revealed upon user activation of
input control 106. In general, the path 202 corresponds to a
linear sequence representing parent containers of a current
container organized in a container hierarchy. That is, the path
may represent a linear sequence from the current container to
a root container in the container hierarchy. For example,
containers 204,206, 208, and 210 are parent containers of the
current container 211 and represent a linear sequence from
the current container 211 to the root container 204.

Here, the current container is the “Current Container” con
tainer 211 and represents the “Container expanded con
tainer 102 in the path 202. However, the current container 211
need not be labeled “Current Container.” Rather, any suitable
name(s) can be assigned to the container and displayed in the
containerheader or on an icon, to name some examples. Other
designations are possible according to, e.g., user input.

In some implementations, there may be several possible
paths from the current container 211 to the root container 204.
In general, these paths may be created when one or more
containers are cloned. In some implementations, a container
may be cloned to act as a proxy for another container and/or
function. Additionally, in Some implementations, a cloned
container may be used more than once in the process. For
example, in the context of a compositing process, a cloned
operation may be directed to a different portion of the com
posited image but may include one or more of the same
sibling items as the original container. In some implementa
tions, a clone is identical wherever it is located in the graph. In
a sense, the same object can exist in multiple locations within
the graph. The graphical user interface can include an indi
cator for when a container is a clone.

In reference to FIG. 2B, an example presentation of a first
path 202 and a second path 214 is shown that illustrates how
multiple paths may be presented. For example, the second
path 214 includes the root “Container 1 container 204 and
“Cont. 5’ container 216 and “Container 6’ container 218 in a
linear sequence that also includes the cloned “Current Con
tainer container 220 (which was cloned from the “Contai
ner expanded” container 102). In addition, because there is a
clone of container 102, the container includes a graphical
representation 222 which indicates to a user that the container
102 has been cloned.

10

15

25

30

35

40

45

50

55

60

65

6
When the user navigates to the container (e.g., by opening

parent containers down to a chosen level of granularity), the
path taken by the user is considered the current path to the
container and can be visually indicated, as discussed above.
When a container is being displayed in isolation (e.g., as a
separate container on the screen, without visible parent con
tainers), the current path can be selected in another way. In
Some implementations, when multiple paths to a clone are
available, the path that was actually traversed to arrive at the
selected container is displayed nearest the current container.
One or more other possible paths in the container hierarchy to
the same current container can then be displayed elsewhere,
Such as above the traversed path. For example, because path
214 was actually traversed, and path 202 was not traversed,
path 214 would be the presented path. That is, because here
there are two paths 202 and 214 in the container hierarchy, the
presented path is selected from the first path 202 and the
second path 204.

Here, the paths are stacked vertically in the graphical user
interface and are arranged parallel to each other. That is, the
first linear sequence corresponding to the first path 202 is
presented in parallel with a second linear sequence corre
sponding to the second path 214. As such, any number of
linear sequences and corresponding paths may be presenting
based on the number of paths from a current container to a
root container according to the container hierarchy (e.g.,
according to the number of clones of container 102 in the
container hierarchy). In some implementations, the path 202
and the path 214 may be stacked horizontally or in other
configurations while still maintaining the parallel alignment.
Some examples of these configurations are described in more
detail below.

In some implementations, in the path representation (e.g.,
paths 202 and 214), each level of the hierarchy includes two
parts:

1. Name of Parent The name of a parent for each level in
the path hierarchy.

2. Siblings Popup input control represented by an icon
which is responsive to user input and reveals the sibling items
at each of the levels in the path hierarchy. In some implemen
tations, the contents of the container may be used to deter
mine whether an input control should be presented. For
example, containers 204, 206, 208, and 211 include sibling
pop-up input control 212 that can be used to present the
contents included therein, while container 210 does not
include a similar control because, e.g., container 210 does not
include any additional items or because those items are
already presented in the graphical user interface. Addition
ally, in Some implementations, a function can resemble a
container that has no contents (e.g., as a container that does
not include the pop-up input control 114). For example, both
functions and containers may be represented by a basic "pill
shape (e.g., similar to containers 204, 206, 208, or other items
described in reference to FIGS. 1-5). Other shapes, some of
which are described below, may also be presented.

FIG.3 shows an example of displaying sibling items asso
ciated with a parent container. In some implementations, the
sibling items are provided in response to user input. For
example, if the user wishes to see the stack of sibling items at
a given level of the hierarchy, the user can hover over the
respective sibling input control 212 next to each container in
the hierarchy to see the stack of sibling items revealed as a list.
Here, hovering over the sibling pop-up control associated
with the container 208 can reveal a vertical sibling menu 3.02
where the user can select any or all of the sibling items.
However, the sibling menu 3.02 can be presented in other
manners (e.g., as a horizontal list or a radial list, to name two

US 8,943,442 B1
7

examples). In some implementations, when the cursor leaves
the sibling menu 3.02, the path can remain visible as it was
initially (e.g., as illustrated in FIG. 2A). In some implemen
tations, the ordering of the sibling items in the sibling menu
302 can specify the order of operations performed. For
example, in Some implementations, the bottom most item
(e.g., function 306) can be performed first, while the topmost
item (e.g., items included in container 304) are performed
last.

In general, any sibling item can be selected and revealed in
the graphical user interface. For example, in some implemen
tations, if sibling item 304 is selected, the sibling can be
shown in isolation (e.g., as illustrated in FIG. 1). That is, the
container 102 may be closed and the sibling item 304 may be
opened and presented without a path (e.g., path 202). How
ever, Such a path could later be revealed according to receiv
ing a path reveal request (e.g., if a user selects the input
control 106 of the isolated container). Similarly, if the user
selects any of the parent containers in the hierarchy (e.g., the
parent containers presented in path 204), the currently
selected container is closed and the parent which was selected
in the path replaces the currently selected container.

FIG. 4 shows an example of receiving a partial-perfor
mance request. In general, the user can provide input identi
fying a subset of the parent containers defined between the
current container and a level in the hierarchy as the partial
performance request. For example, the user can drag, using a
mouse or other user input device, a cursor or other selection
function from the “Current Container container 211 to any
other container, such as the “Cont. 2” container 206, as illus
trated by line 402. In some implementations, the user can drag
an input control from the current container up to an arbitrary
level of the path. For example, the user can drag the path
reveal input control 106 (e.g., from the current container 211
to the container 206, which is the second-highest level in this
example).

Doing so may have a variety of effects. In some implemen
tations, in response to the partial-performance request, the
first operation and those of the operations that the subset of
the parent containers provide to the process may be per
formed. For example, the operations provided by containers
206, 208,210, and 102 may be performed withoutperforming
the operations provided by container 204. In the context of an
image compositing process, only the portions of a particular
image corresponding to containers 206, 208, 210, and 102
would be composited in response to the partial-performance
request and not the portion of the particular image corre
sponding to container 204, for example.

In addition, in Some implementations, performing the
dragging operation may open the parent of the “Cont. 2”
container 206—here the “Container 1' container 204—and
disclose the container or function at which the user ended the
dragging (e.g., where the user dropped the dragged button). If
the dragged-to item is a container, then it can be expanded
(e.g., using an expansion mode described below) so that its
contents are visible. The current object can remain selected
and its attributes can be visible in an attribute editor if open.
In some implementations, this operation can also be per
formed upon the user holding down the shift key when click
ing on the parent item.

FIG. 5 shows an example of expanding a container. Here,
the container 206 is presented in response to the drag opera
tion described above. That is, because the user performed a
drag operation (e.g., illustrated by line 402 (FIG. 4)) the
containers 206, 208, 210, and 102 are presented in an
expanded manner according to the selection. In other words,
in Some implementations, the containers in the path can be

10

15

25

30

35

40

45

50

55

60

65

8
iteratively expanded from the selected level in the hierarchy
to the current container (e.g., the "Container expanded con
tainer 102). In some implementations, expanding a container
can insert each Subsequent level by a predetermined distance,
e.g., 22 pixels, from one side. Such as from the left side. Here,
the “Container 2 container 206 is shown. The container 206
includes a number of items (e.g., functions and other contain
ers). In the example shown, the “Container 3 container 208
is also shown in an expanded State because it contains addi
tional items and was not the current container. Here, the
“Container 3” container 208 is expanded in a columnar
expansion mode, although other expansion modes are also
possible.
The expansion modes can apply to essentially every con

tainer. Here, arrow symbols 502a and 502b can be used for
choosing the expansion mode. For example, on in the "Con
tainer expanded container 102 the user can “tug' the arrow
symbol 502a (e.g., using a mouse or other pointing device) in
a horizontal direction to expand the corresponding item using
a first expansion mode (e.g., a columnar expansion mode). As
another example, the user can tug the arrow symbol 502 in a
vertical direction on any of the items in the container 210 to
expand the corresponding item using a different expansion
mode. If the input controls 502a or 502b are tugged (or
otherwise activated), corresponding to one of the expansion
modes, on an item that is currently expanded using the other
expansion mode, then the item can be changed from the
current expansion mode directly into the new expansion
mode without being placed in a collapsed State in between.
Other input controls for choosing between expansion modes
can be used.

In some implementations, one or more keyboard shortcuts
can be used to manage items. For example, a keyboard short
cut of one or more keystrokes can be used to place a selected
container at a chosen location in the path. As another
example, a keyboard shortcut can be used to select the expan
sion mode for a selected container.

After the corresponding containers are expanded, the user
can close, relocate or otherwise manipulate some or all of the
items in containers 206 and 210. This can allow the user to
remove any operations that are not immediately relevant to
the task(s) that the user is about to perform. Additionally, this
can allow the user to configure one or more aspects of one or
more of the functions (e.g., changing one or more input values
associated with a function which may result in a change to the
output of the function).
The following describes additional examples of features

provided by the graphical user interface. Containers can be
expanded by tugging downward on a user input control (e.g.,
input controls 502a or 502b). A single container which by
default is collapsed in the graphical user interface can instead
be expanded. A possible exception to this involves functions
which have no contents but have a mask or other secondary
input. These can for example expand to the right in columnar
mode only. The expansion of these inputs may always take
place in columnar mode. Their expansion is initiated from the
expansion toggle on the right and is the only way to reveal a
secondary input. Functions have no disclosure toggle.

In some implementations, one or more keyboard keys can
modify a behavior when held down while selecting one of the
parents in the path hierarchy. For example, holding down the
Shift key when selecting (e.g., when clicking) any level
higher than the current level may reveal the parent container
and expand to reveal the currently selected object. As another
example, holding down the Alt key when selecting (e.g.,
clicking)any level of the path can reveal the clicked container
in isolation in the graphical user interface. Additionally, in

US 8,943,442 B1

Some implementations, a cursor change can indicated the
modified behavior. For example, a cursor change can indicate
that an isolated container will be presented when a user
presses the Alt key.

FIG. 6 shows an example technique 600 for revealing a
plurality of paths of an isolated container. The technique 600
can be performed by a processor executing instructions from
a computer-readable medium. For simplicity, the technique
600 will be described from the standpoint of a system that is
configured to perform the technique 600. Also, for illustrative
purposes, the technique 600 is described in reference to FIGS.
1 and 2B, but the technique 600 is not limited to those ele
ments depicted in FIGS. 1 and 2B.

In step 602, the system displays, in a display device area
that controls a process of operations defined by containers
organized in a hierarchy, a current container providing at least
a first operation to the process. For example, the system can
display the “Container expanded container 102 in a graphi
cal user interface in the display device area.

In step 604, the system, receives a path reveal request for
the current container. For example, the system can receive a
path reveal request corresponding to a user selection of input
control 106.

In step 606, the system displays, adjacent the current con
tainer in the display device area and in response to the path
reveal request: a first linear sequence that represents first
parent containers of the current container corresponding to a
first path in the hierarchy and a second linear sequence that
represents second parent containers of the current container
corresponding to a second path in the hierarchy. For example,
the system can display a first linear sequence that represents
the parent containers 204, 206, 208, and 210 of the current
container 211 corresponding to the first path 202. Further
more, the system can display a second linear sequence that
represents the parent containers 204, 216, and 218 of the
current container 220 corresponding to the second path 214.

FIG. 7 shows an example technique 700 that can be used
with the technique 600 in FIG. 6. The technique 700 can be
performed before, between or after any of the steps in tech
nique 600, by a processor executing instructions from a com
puter-readable medium. For simplicity, the technique 700 is
described from the standpoint of a system that is configured to
perform the technique 700. Also, for illustrative purposes, the
technique 700 is described in reference to FIGS. 2A and 4, but
the technique 700 is not limited to those elements depicted in
FIGS. 2A and 4.

In step 702, the system displays, in a display device area
that controls a process of operations, a current container
providing at least a first operation to the process, and a linear
sequence representing parent containers of the current con
tainer organized in a hierarchy. In some implementations, the
system can display a linear sequence corresponding to path
202 that represents parent containers 204, 206, 208, and 210
of the current container 211. For example, the linear sequence
can be one of those displayed according to step 606.

In step 704, the system receives a partial-performance
request identifying a Subset of the parent containers defined
between the current container and a level in the hierarchy. For
example, the system can receive a drag operation from an
input device identifying the subset of containers 206, 208, and
210. The partial-performance request can be received before
or after the path reveal request is received in step 604.

In step 706, the system performs, in response to the partial
performance request, the first operation and those of the
operations that the Subset of the parent containers provides to
the process. For example, in the context of a compositing
operation, the system can perform the operations provided by

10

15

25

30

35

40

45

50

55

60

65

10
containers 206, 208, 210, and 211, while not performing the
operations provided by the container 204. The first operation
can be performed before or after the first and second linear
sequences are displayed in step 606.

FIGS. 8A-8D show examples of alternative representa
tions that may be presented in the graphical user interface. In
general, a current container 802a-802d can be presented in
the graphical user interface and one or more paths 804a–804d
and 806a-806 may be presented adjacent to the current con
tainer 802a-802d. For example, in portions of the container
hierarchy that include cloned containers, the current con
tainer can be presented adjacent to and parallel with a plural
ity of paths (e.g., paths 804a–804 in parallel with paths 804a
804d, respectively). As another example, if the particular
portion of the container hierarchy presented does not include
any cloned containers, a single path may be represented (e.g.,
paths 804a–804d may be presented adjacent to current con
tainer 802a-802d, respectively). Any of the functionality
described above may be implemented in the alternative
implementations. For example, any of the parent containers
included in the paths 804a–804d may include input controls
212 that are responsive to user input and present a sibling
menu (e.g., sibling menu 302).

Containers with shapes other than rectangular can be used
in Some implementations. For example, circular, elliptical,
triangular, polygonal, or irregular containers can be used.
Some implementations can use three-dimensional containers.

In Some implementations, the representations may be
modified according to the contents of a container. For
example, a container may be represented according to the
number of items contained therein. That is, a container can be
represented larger in the graphical user interface if it has many
items, and Smaller in the graphical user interface if it contains
few items.

FIG. 9 shows an example of receiving a partial-perfor
mance request for one of the revealed paths of FIG.2B. Here,
the partial-performance request is generated for the path 202.
For example, the user can drag, using a mouse or other user
input device, a cursor or other selection function from the
“Current Container container 211 to any other container,
such as the “Cont. 2” container 206, as illustrated by line 900.
In some implementations, the user can drag an input control
from the current container up to an arbitrary level of the path.
In a similar way the user can generate a partial-performance
request for the path 214, and a line corresponding to the line
900 can then be shown to illustrate the request. The partial
performance request may have a variety of effects, for
example that the first operation and those of the operations
that the subset of the parent containers provide to the process
are performed.

FIG. 10 is a schematic diagram of a generic computer
system 1000. The system 1000 can be used for the operations
described in association with any of the computer-implement
methods described previously, according to one implementa
tion. The system 1000 includes a processor 1010, a memory
1020, a storage device 1030, and an input/output device 1040.
Each of the components 1010, 1020, 1030, and 1040 are
interconnected using a system bus 1050. The processor 1010
is capable of processing instructions for execution within the
system 1000. In one implementation, the processor 1010 is a
single-threaded processor. In another implementation, the
processor 1010 is a multi-threaded processor. The processor
1010 is capable of processing instructions stored in the
memory 1020 or on the storage device 1030 to display graphi
cal information for a user interface on the input/output device
1040.

US 8,943,442 B1
11

The memory 1020 stores information within the system
1000. In some implementations, the memory 1020 is a com
puter-readable medium. The memory 1020 is a volatile
memory unit in Some implementations and is a non-volatile
memory unit in other implementations.
The storage device 1030 is capable of providing mass

storage for the system 1000. In one implementation, the stor
age device 1030 is a computer-readable medium. In various
different implementations, the storage device 1030 may be a
solid state drive, such as RAM outfitted with a hard drive data
bus, a floppy disk device, a hard disk device, an optical disk
device, a tape device, or holographic storage.
The input/output device 1040 provides input/output opera

tions for the system 1000. In one implementation, the input/
output device 1040 includes a keyboard and/or pointing
device. In another implementation, the input/output device
1040 includes a display unit for displaying graphical user
interfaces.
The features described can be implemented in digital elec

tronic circuitry, or in computer hardware, firmware, Software,
or in combinations of them. The apparatus can be imple
mented in a computer program product tangibly embodied in
an information carrier, e.g., in a machine-readable storage
device, for execution by a programmable processor, and
method steps can be performed by a programmable processor
executing a program of instructions to perform functions of
the described implementations by operating on input data and
generating output. The described features can be imple
mented advantageously in one or more computer programs
that are executable on a programmable system including at
least one programmable processor coupled to receive data
and instructions from, and to transmit data and instructions to,
a data storage system, at least one input device, and at least
one output device. A computer program is a set of instructions
that can be used, directly or indirectly, in a computer to
perform a certain activity or bring about a certain result. A
computer program can be written in any form of program
ming language, including compiled or interpreted languages,
and it can be deployed in any form, including as a stand-alone
program or as a module, component, Subroutine, or other unit
Suitable for use in a computing environment.

Suitable processors for the execution of a program of
instructions include, by way of example, both general and
special purpose microprocessors, and the Sole processor or
one of multiple processors of any kind of computer. Gener
ally, a processor will receive instructions and data from a
read-only memory or a random access memory or both. The
essential elements of a computer area processor for executing
instructions and one or more memories for storing instruc
tions and data. Generally, a computer will also include, or be
operatively coupled to communicate with, one or more mass
storage devices for storing data files; Such devices include
magnetic disks, such as internal hard disks and removable
disks; magneto-optical disks; and optical disks. Storage
devices Suitable for tangibly embodying computer program
instructions and data include all forms of non-volatile
memory, including by way of example semiconductor
memory devices, such as EPROM, EEPROM, and flash
memory devices; magnetic disks Such as internal hard disks
and removable disks; magneto-optical disks; and CD-ROM
and DVD-ROM disks. The processor and the memory can be
Supplemented by, or incorporated in, ASICs (application
specific integrated circuits).
To provide for interaction with a user, the features can be

implemented on a computer having a display device such as a
CRT (cathode ray tube) or LCD (liquid crystal display) moni
tor for displaying information to the user and a keyboard and

10

15

25

30

35

40

45

50

55

60

65

12
a pointing device Such as a mouse or a trackball by which the
user can provide input to the computer.
The features can be implemented in a computer system that

includes a back-end component, Such as a data server, or that
includes a middleware component, such as an application
server or an Internet server, or that includes a front-end com
ponent, such as a client computer having a graphical user
interface or an Internet browser, or any combination of them.
The components of the system can be connected by any form
or medium of digital data communication Such as a commu
nication network. Examples of communication networks
include, e.g., a LAN, a WAN, and the computers and networks
forming the Internet.
The computer system can include clients and servers. A

client and server are generally remote from each other and
typically interact through a network, Such as the described
one. The relationship of client and server arises by virtue of
computer programs running on the respective computers and
having a client-server relationship to each other.
A number of implementations have been described. Nev

ertheless, it will be understood that various modifications
may be made without departing from the spirit and scope of
this disclosure. Accordingly, other implementations are
within the scope of the following claims.

What is claimed is:
1. A computer-implemented method of representing an

image compositing process, the method comprising:
displaying, in a display device area including containers

organized in a container hierarchy, a current container
representing at least a first image compositing operation
of the image compositing process, wherein the container
hierarchy corresponds to a hierarchy of image compos
iting operations, the hierarchy of image compositing
operations comprising:
a first path to the first image compositing operation; and
a second path to the first image compositing operation;

receiving, in a system generating the display device area, a
path reveal request for the current container; and

displaying, adjacent to the current container in the display
device area and in response to the path reveal request:
a first linear sequence that represents first parent con

tainers of the current container corresponding to the
first path to the first image compositing operation in
the hierarchy of image compositing operations; and

a second linear sequence that represents second parent
containers of the current container corresponding to
the second path to the first image compositing opera
tion in the hierarchy of image compositing opera
tions.

2. The computer-implemented method of claim 1, further
comprising:

receiving, in the system, user input corresponding to a
hovering operation by a cursor proximate to one of the
parent containers in the first linear sequence or the sec
ond linear sequence; and

displaying, in the display device area, each sibling item
associated with the parent container.

3. The computer-implemented method of claim 1, wherein
the first path and the second pathare displayed parallel to each
other.

4. The computer-implemented method of claim3, wherein
the first pathis displayed nearer the current container than the
second path, based on the first path having been used for
navigating to the current container.

5. The computer-implemented method of claim 1, further
comprising:

US 8,943,442 B1
13

receiving, in the system, user input corresponding to an
isolation request for one of the parent containers in one
of the first linear sequence and the second linear
sequence; and

14
11. A non-transitory, computer-readable storage medium

including instructions that, when executed by one or more
processors, generate in a display device area a graphical user
interface for representing an image compositing process, the

displaying, in the display device area, the parent container 5 graphical user interface comprising:
in isolation from a remainder of either the first linear
sequence or the second linear sequence.

6. The computer-implemented method of claim 1, further
comprising:

receiving, in a system generating the display device area, a
partial-performance request for one of the first and sec
ond linear sequences, the partial-performance request
identifying a Subset of the first or second parent contain
ers defined between the current container and a level in
the hierarchy; and

performing, in response to the partial-performance request,
the first image compositing operation and those of the
image compositing operations that the Subset of the par
ent containers provide to the process.

7. The computer-implemented method of claim 6, wherein
the partial-performance request is received from at least one
user input device and is generated by a dragging operation
starting at the current container and ending at the level in the
hierarchy.

8. A non-transitory, computer-readable storage medium
comprising instructions that, when executed by a one or more
processors, cause the one or more processors to perform
operations comprising:

displaying, in a display device area including containers
organized in a container hierarchy, a current container
representing at least a first image compositing operation
of the image compositing process, wherein the container
hierarchy corresponds to a hierarchy of image compos
iting operations, the hierarchy of image compositing
operations comprising:
a first path to the first image compositing operation; and
a second path to the first image compositing operation;

receiving, in a system generating the display device area, a
path reveal request for the current container, and

displaying, adjacent to the current container in the display
device area and in response to the path reveal request:
a first linear sequence that represents first parent con

tainers of the current container corresponding to the
first path to the first image compositing operation in
the hierarchy of image compositing operations; and

a second linear sequence that represents second parent
containers of the current container corresponding to
the second path to the first image compositing opera
tion in the hierarchy of image compositing opera
tions.

9. The computer program product of claim 8, the method
further comprising:

receiving, in a system generating the display device area, a
partial-performance request for one of the first and sec
ond linear sequences, the partial-performance request
identifying a Subset of the first or second parent contain
ers defined between the current container and a level in
the hierarchy; and

performing, in response to the partial-performance request,
the first image compositing operation and those of the
image compositing operations that the Subset of the par
ent containers provide to the process.

10. The computer program product of claim 9, wherein the
partial-performance request is received from at least one user
input device and is generated by a dragging operation starting
at the current container and ending at the level in the hierar
chy.

10

15

25

30

35

40

45

50

55

60

65

a current container providing at least a first image compos
iting operation of an image compositing process,
wherein:
the current container is part of a container hierarchy:
the container hierarchy corresponds to a hierarchy of

image compositing operations in the image compos
iting process; and

the hierarchy of image compositing operations com
prises a first path to the first image compositing opera
tion and a second path to the first image compositing
operation; and;

a first linear sequence that represents first parent containers
of the current container corresponding to the first path to
the first image compositing operation in the hierarchy of
image compositing operations;

a second linear sequence that represents second parent
containers of the current container corresponding to the
second path to the first image compositing operation in
the hierarchy of image compositing operations; and

a first input control for generating a path reveal request for
the current container, wherein the first linear sequence
and second linear sequence are displayed, in the display
device area, adjacent to the current container and in
response to the path reveal request.

12. The computer program product of claim 11, wherein
the graphical user interface further comprises:

a second input control responsive to a hovering operation
by a cursor proximate to one of the parent containers in
the first linear sequence or the second linear sequence;
and

a first presentation control for displaying, in the display
device area, each sibling item associated with a parent
container.

13. The computer program product of claim 12, wherein
the graphical user interface further comprises:

a third input control responsive to user input corresponding
to an isolation request for one of the parent containers;
and

a second presentation control for displaying, in the display
device area, the parent container in isolation from a
remainder of the first linear sequence or the second
linear sequence.

14. The computer program product of claim 11, wherein
the first path and the second pathare displayed parallel to each
other.

15. The computer program product of claim 14, wherein
the first pathis displayed nearer the current container than the
second path, based on the first path having been used for
navigating to the current container.

16. The computer program product of claim 11, wherein
the process of operations is directed to the generation of at
least one composite image corresponding to the operations of
the first linear sequence or the second linear sequence.

17. The computer program product of claim 11, wherein
the graphical user interface further comprises:

a second input control for generating a partial-performance
request for one of the first and second linear sequences,
the partial-performance request identifying a Subset of
the first or second parent containers defined between the
current container and a level in the hierarchy.

18. The computer program product of claim 17, wherein
the second input control is responsive to input from at least

US 8,943,442 B1
15

one user input device generated by a dragging operation
starting at the current container and ending at the level in the
hierarchy.

16

