
US009035949B1

(12) United States Patent (10) Patent No.: US 9,035,949 B1
Oberheu et al. (45) Date of Patent: May 19, 2015

(54) VISUALLY REPRESENTING ACOMPOSITE 8,397,176 B2 * 3/2013 Subramanian et al. 715/809
GRAPH OF IMAGE FUNCTIONS 2002/0032697 A1 3/2002 French et al. 7O7/5OO1

2002fO140707 A1* 10, 2002 Samra et al. 345,619
2003/0218634 A1* 1 1/2003 Kuchinsky et al. ... 345,764

(75) Inventors: Kent Oberheu, Berkeley, CA (US); 2004/0169688 A1* 9, 2004 Burdick et al. 345,854
Piotr Stanczyk, San Francisco, CA 2004/0196.299 A1* 10, 2004 Di Lelle et al. 345,619
(US); Edward Hanway, Mill Valley, CA 2005, OO3917.6 A1* 2, 2005 Fournie ... 717, 156
US); Patrick Tubach, Novato, CA (US 2005/0256891 A1* 11/2005 Voln TO7 101 (US); Patrick Tubac OVaO (US) 2006/0048,075 A1 3/2006 Kim T15,840

(73) Assignee: Lucasfilm Entertainment Company (Continued)
Ltd., San Francisco, CA (US) OTHER PUBLICATIONS

(*) Notice: Subject to any disclaimer the term of this Konstantinos et al., The Khoros Software Development Environment
patent is extended or adjusted under 35 for Image and Signal Processing, May 1994, IEEE Transactions on
U.S.C. 154(b) by 743 days. Image Processing, vol. 3, No. 3, pp. 243-252.*

(21) Appl. No.: 12/756,046 (Continued) ppl. No.: 9

(22) Filed: Apr. 7, 2010 Primary Examiner — Aaron M Richer
Assistant Examiner — Anh-Tuan V Nguyen

Related U.S. Application Data SCCF Agent, or Firm — Kilpatrick Townsend &
(60) Provisional application No. 61/284.475, filed on Dec.

21, 2009. (57) ABSTRACT
51) Int. C Visually representing a composite graph of image functions
(51) or iI/20 2006.O1 includes providing a visual representation of a composite

(.01) graph for an image, the visual representation including first
(52) U.S. Cl. items corresponding to respective image functions, and sec

CPC G06T II/206 (2013.01) ond items corresponding to containers for image functions,
(58) Field of Classification Search the image to be rendered by performing the image functions

None in an order defined by the composite graph. The user selects
See application file for complete search history. an expansion mode for presenting contents of a first container,

each of the containers having a first expansion mode wherein
(56) References Cited the contents are displayed generally adjacent the visual rep

U.S. PATENT DOCUMENTS

5.490.246 A * 2/1996 Brotsky et al................. 715,763
6,282,699 B1* 8/2001 Zhang et al. 717/109
6,298.474 B1 * 10/2001 Blowers et al. T17,104
6,763,515 B1* 7/2004 Vazquez et al. 717/109
7,020,868 B2 * 3/2006 Debbins et al. 717/108
7,145,562 B2 * 12/2006 Schechter et al. 345,420
7,290,216 B1 * 10/2007 Kawahara et al. 715,762
7.463,263 B2 * 12/2008 Gilboa 345,440

G9 Fg Plate b
GD Optimus Prime 0.

resentation, and a second expansion mode where the contents
are displayed generally within the visual representation. A
modified visual representation of the composite graph is pro
vided in response to the input, wherein the modified visual
representation maintains the order of the image functions
defined by the composite graph and has the first container
expanded according to the selected expansion mode.

20 Claims, 16 Drawing Sheets

200

2f
G. Left Foot d 8
G) Right Foot D

216
Color Correction Go

V NY

US 9,035,949 B1
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2006/0259853 A1* 1 1/2006 Zellweger et al. T15,500.1
2006/0274070 A1* 12, 2006 Herman et al. ... 345/474
2007/00 16615 A1 1/2007 Mohan et al. TO7 104.1
2007.0035543 A1* 2, 2007 David et al. 345,420
2007/0162953 A1*
2007/O198949 A1*

7/2007 Bolliger etal
8, 2007 Rummel

2008/0030504 A1 2/2008 Brunner et all
2009 OOO9520 A1* 1/2009 Breton et al. .. 345/473
2009,0289941 A1* 11, 2009 Davidson et al. 345/427
2013/O125052 A1* 5, 2013 Baird T15,810

OTHER PUBLICATIONS

725,142
715,810
345/473

Apple's SHAKE product (undated screenshot from product that was
commercially available more than one year before the priority date of
this patent application), downloaded from the internet at: http://4.bp.
blogspot.com/ x9CaFLWJo1M/S1 lruGhkiPI/AAAAAAAABJc/
032-pXXhevk.'s 1600-h/Screen+shot--2010-01-25+at+AM+04.08.
32.png on Jun. 30, 2011, 1 page.
Audiovisual Panorama"The Foundry Nuke Starts Selling 5.2’. Aug.
27, 2009, downloaded from the internet at: http://www.
panoramaaudiovisual.com/en/2009/08/27/starts-selling- the
foundry-nuke-5-February on Jul. 1, 2011, 2 pages.
Big Blocks (Undated Screenshot from product that was commercially
available more than one year before the priority date of this patent
application), 1 page.
Bragdon, “Code Bubbles: Rethinking the User Interface Paradigm of
Integrated Development Environments', downloaded from the
internet at: http://www.youtube.com/comment servlet?all com
ments&v=PsPXOnE1JOk on Apr. 7, 2010, 8 pages.
Bragdon, “Code Bubbles: Rethinking the User Interface Paradigm of
Integrated Development Environments' , downloaded from the
internet at: http://www.youtube.com/watch?v=PsPXOnElJOkon Apr.
7, 2010, 2 pages.
Bragdon, “Code Bubbles: Rethinking the User Interface Paradigm of
Integrated Development Environment, Bubbles Metaphor”, down
loaded from the internet at: http://www.cs.brown.edu/people/acb?.
codebubbles details.htm on Apr. 7, 2010 2 pages.
Bragdon, “Code Bubbles: Rethinking the User Interface Paradigm of
Integrated Development Environment, FAQ, downloaded from the
internet at: http://www.cs.brown.edu/people/acb/codebubbles facq.
htm on Apr. 7, 2010 2 pages.

Bragdon, “Code Bubbles: Rethinking the User Interface Paradigm of
Integrated Development Environment, Overview”, downloaded from
the internet at: http://www.cs.brown.edu/people/acb/codebubbles
site.htm on Apr. 7, 2010 2 pages.
Johnson, “DJX Blog: Layering Shaders with MentalRay', Feb. 1.
2008, downloaded from the internet at : http://wwww.dx.com.au/
blog/2008/02/01/layering-shaders-with-mentalray on Jul. 1, 2011, 9
pageS.
LEGO Mindstorms Nxt (undated screenshot from product that was
commercially available more than one year before the priority date of
this patent application), 1 page.
LEGO software (undated screenshot from product that was commer
cially available more than one year before the priority date of this
patent application), 1 page.
Los Angeles Final Cut Pro User Group (undated screenshot from
product that was commercially available more than one year before
the priority date of this patent application), downloaded from the
internet at: http://www.lafcpug.org/images basic chroma
sample? ShakeScript2.jpg on Jun. 30, 2011, 1 page.
OpenMovie Editor (undated screenshot from product that was com
mercially available more than one year before the priority date of this
patent application), downloaded from the internet at: http://www.
openmovieeditor.org/images/node filters shadow.png on Jun. 30.
2011, 1 page.
RMoX 0.1.5 Windowing System (undated screenshot from product
that was commercially available more than one year before the pri
ority date of this patent application), 1 page.
Schultz. “Navigating with the Address Bar in Windows Vista's Win
dows Explorer', downloaded from the internet at: http://articies.
techrepublic.com.com/5100-10878 11-6116684.html on May 26,
2010, 6 pages.
The Foundry Visionmongers Ltd. “The Foundry at NAB 2011”, Apr.
12, 2011, downloaded from the internet at: http://www.thefoundry.
co.uk/articles/2011/04/12/240/the-foundry-at-nab-2011/#NUKE on
Jul. 1, 2011, 5 pages.
.Theprodukkt".theprodukkit will make you happy” downloaded from
the internet at: http://www.theprodukkit.com/theprodukkton Oct. 14.
2009, 3 pages.
Wikipedia, "URL bar', downloaded from the internet at: http://web.
archive.org/web/2008.0122161603/http:/en.wikipedia.org/wiki/Ad
dress bar on Jun. 22, 2011, last modified on Dec. 24, 2007, 2 pages.

* cited by examiner

US 9,035,949 B1 Sheet 1 of 16 May 19, 2015 U.S. Patent

** (s)udejo

?InpOW queue6eue W udejº)

US 9,035,949 B1 Sheet 2 of 16 May 19, 2015 U.S. Patent

C< 3]eld T65 @D

US 9,035,949 B1 Sheet 3 of 16 May 19, 2015 U.S. Patent

U.S. Patent May 19, 2015 Sheet 4 of 16 US 9,035,949 B1

V Scratch (e) G.)
O D - File Container C) m 302
O Function

O D - File Container G) 300
O D F. File Container

O () - File Node 92
OCD F Roto Container ge) m
OO Function G)

OCD F File Container
O () - Generic Container m

US 9,035,949 B1 Sheet 5 of 16 May 19, 2015 U.S. Patent

0
0
9

US 9,035,949 B1 Sheet 6 of 16 May 19, 2015 U.S. Patent

U.S. Patent May 19, 2015 Sheet 7 of 16 US 9,035,949 B1

700

V Shot op010 G)

D cd Final Filter Chain
e Big Back Over OD E. Big Back over God)CD cd Final Filter Chain m)

De Smoke Elements
O F. Spark Elements

CD cd Edge Wrap Optimus m)
CD F. Optimus m)
CD to Big Filter Chain m) -- 702

Cable Source
C Grain Cable m)

Clamp Cable

PreMult Cable
704

Fade Cable
Exposure Cable SE Range Cable

O Bg Source

O
O
O
O
O
O
O

O (Y de Cable source m
O
O
O
O
O
O

O

FIG. 7

US 9,035,949 B1 Sheet 9 of 16 May 19, 2015 U.S. Patent

0000},

U.S. Patent May 19, 2015 Sheet 10 of 16 US 9,035,949 B1

s
s

s

s s

U.S. Patent May 19, 2015 Sheet 11 of 16 US 9,035,949 B1

V Comp Container CX)

O (D cd AOV Container
1102

1100

O File-In COntainer 1

FIG. 11A

V Comp Container CX) 1100

1104

V File-In Container 2

PreMult Cable
1106 Fade Cable

1100

re T 8

FIG. 11C

U.S. Patent May 19, 2015 Sheet 12 of 16 US 9,035,949 B1

1200

U.S. Patent May 19, 2015 Sheet 13 of 16 US 9,035,949 B1

FIG. 13C

US 9,035,949 B1 Sheet 14 of 16 May 19, 2015 U.S. Patent

+ < O

TF < O

U.S. Patent May 19, 2015 Sheet 16 of 16 US 9,035,949 B1

i

US 9,035,949 B1
1.

VISUALLY REPRESENTING ACOMPOSITE
GRAPH OF IMAGE FUNCTIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application Ser. No. 61/284.475, filed Dec. 21, 2009, the
entire contents of which are incorporated herein by reference.

TECHNICAL FIELD

This document relates to composite graphs.

BACKGROUND

User interfaces for performing image compositing may
require users to work with a visual presentation of a graph of
composition nodes of which only a portion is typically able to
be shown on a display device at any given time. Users spend
a great deal of time navigating graphs in order to find specific
image processing nodes which results in lost time; also, in
these systems the context is the only way for the user under
stand where they are in the graph.

SUMMARY

The invention relates to composite graphs.
In a first aspect, a computer-implemented method for visu

ally representing a composite graph of image functions
includes providing, in a computer system, a visual represen
tation of a composite graph for an image, the visual represen
tation including first items corresponding to respective image
functions, and second items corresponding to containers for
image functions, wherein the image is to be rendered by
performing the image functions in an order defined by the
composite graph. The method includes receiving, in the com
puter system, an input made by the user in selecting an expan
sion mode for presenting contents of a first container, each of
the containers having a first expansion mode wherein the
contents are displayed generally adjacent the visual represen
tation, and a second expansion mode where the contents are
displayed generally within the visual representation. The
method includes providing, in the computer system, a modi
fied visual representation of the composite graph in response
to the input, wherein the modified visual representation main
tains the order of the image functions defined by the compos
ite graph and has the first container expanded according to the
selected expansion mode.

Implementations can include any or all of the following
features. The modified visual representation further includes,
simultaneously with the first container that is expanded
according to the selected expansion mode, a second container
expanded using another expansion mode of the containers
than the selected expansion mode. The first container is
expanded using the first expansion mode and has included
therein the second container which is expanded using the
second expansion mode. The first expansion mode involves:
the visual representation has the first container and at least
one other first or second item organized in a generally vertical
list in the visual representation, the expanded first containeris
horizontally offset to a location on one side of the vertical list
and visually connected to the first container in the vertical list,
and the expanded first container includes at least one first or
second item visible at the location. The second expansion
mode involves: the visual representation has the first con
tainer and at least one other first or second item organized in

10

15

25

30

35

40

45

50

55

60

65

2
a generally vertical list in the visual representation, the
expanded first container is included in the vertical list starting
where the first container is located, and the other first or
second item is displaced vertically in the vertical list to
accommodate the expanded first container, and the expanded
first container includes at least one first or second item visible
in the vertical list. The visual representation includes second
items corresponding to multiple groups of containers, some
of which are nested within each other such that the visual
representation comprises a hierarchy, the method further
comprising: receiving another input that requests at least two
views into the hierarchy; and generating another modified
visual representation of the composite graph in response to
the other input, the other modified visual representation pro
viding the two views. The two views focus on respective
containers located in topologically separate areas of the hier
archy. At least one of the views is provided by tearing off the
corresponding containers from an initial area of the visual
representation and relocating them adjacent the containers of
the other one of the views, wherein the other modified visual
representation maintains the order of the image functions
defined by the composite graph among the corresponding
containers, and wherein the views are visible after the user
closes a remainder of the visual representation from which
the corresponding containers depend. The method further
includes receiving a user modification of a container in at
least one of the views while the modified visual representa
tion is displayed; and modifying the composite graph accord
ing to the user modification. The user creates the composite
graph by choosing the order and assembling the containers so
that the composite graph reflects the order, the assembly
being done by making one or more inputs in the computer
system causing each of the containers to be placed in respec
tive selected locations.

In a second aspect, a computer program product tangibly
embodied in a computer-readable storage medium includes
instructions that when executed by a processor perform a
method for visually representing a composite graph of image
functions. The method includes providing, in a computer
system, a visual representation of a composite graph for an
image, the visual representation including first items corre
sponding to respective image functions, and second items
corresponding to containers for image functions, wherein the
image is to be rendered by performing the image functions in
an order defined by the composite graph. The method
includes receiving, in the computer system, an input made by
the user in selecting an expansion mode for presenting con
tents of a first container, each of the containers having a first
expansion mode wherein the contents are displayed generally
adjacent the visual representation, and a second expansion
mode where the contents are displayed generally within the
visual representation. The method includes providing, in the
computer system, a modified visual representation of the
composite graph in response to the input, wherein the modi
fied visual representation maintains the order of the image
functions defined by the composite graph and has the first
container expanded according to the selected expansion
mode.

In a third aspect, a computer system includes an image
processing module tangibly embodied in a computer-read
able storage medium, the image processing module config
ured to render an image by performing image functions in an
order defined by a composite graph for the image. The system
includes a graph management module tangibly embodied in a
computer-readable storage medium, the graph management
module configured for: (i) a user to generate the composite
graph by defining the order of the image functions, and for (ii)

US 9,035,949 B1
3

generating a visual representation of the composite graph that
includes items corresponding to containers for the image
functions, each of the containers having a first expansion
mode wherein contents are displayed generally adjacent the
visual representation, and a second expansion mode where
the contents are displayed generally within the visual repre
sentation. The system includes a display device for presenting
the visual representation and, after receiving a user input
selecting one of the first and second expansion modes for
presenting contents of a first container, presenting a modified
visual representation of the composite graph in response to
the user input, the modified visual representation maintaining
the order of the image functions defined by the composite
graph and having the first container expanded according to
the selected expansion mode.

In a fourth aspect, a computer program product is tangibly
embodied in a computer-readable storage medium, the com
puter program product including instructions that, when
executed, generate on a display device a graphical user inter
face for visually representing a composite graph of image
functions. The graphical user interface includes a visual rep
resentation of a composite graph for an image. The graphical
user interface includes first items included in the visual rep
resentation, the first items corresponding to respective image
functions, wherein the image is to be rendered by performing
the image functions in an order defined by the composite
graph. The graphical user interface includes second items
included in the visual representation, each of the second items
corresponding to a container for at least some of the image
functions, each of the containers having a first expansion
mode wherein the contents are displayed generally adjacent
the visual representation, and a second expansion mode
where the contents are displayed generally within the visual
representation. After receiving an input made by a user in
selecting one of the first and second expansion modes for
presenting contents of a first container, the graphical user
interface generates a modified visual representation of the
composite graph in response to the input, the modified visual
representation maintaining the order of the image functions
defined by the composite graph and has the first container
expanded according to the selected expansion mode.

Implementations can include any or all of the following
features. The visual representation includes second items cor
responding to multiple groups of containers, Some of which
are nested within each other such that the visual representa
tion comprises a hierarchy, wherein another input that
requests at least two views into the hierarchy is received,
wherein another modified visual representation of the com
posite graph is generated in response to the other input, the
other modified visual representation providing the two views,
wherein the two views focus on respective containers located
in topologically separate areas of the hierarchy, wherein at
least one of the views is provided by tearing off the corre
sponding containers from an initial area of the visual repre
sentation and relocating them adjacent the containers of the
other one of the views, wherein the other modified visual
representation maintains the order of the image functions
defined by the composite graph among the corresponding
containers, and wherein the views are visible after the user
closes a remainder of the visual representation from which
the corresponding containers depend. The graphical user
interface further comprises an input function for the user to
cause each of the containers to be placed in a selected location
so that the composite graph reflects the order. The input
function comprises at least one of: (i) a drag-and-drop func
tion, the assembly being done by dragging each of the con
tainers and dropping the dragged container in the selected

10

15

25

30

35

40

45

50

55

60

65

4
location; and (ii) a keyboard shortcut. The graphical user
interface further comprises: a project panel that lists each
composite that is involved in a project, including the compos
ite graph, and provides access to sources for the project. The
graphical user interface further comprises: a composite map
panel providing a single location for cross referencing mul
tiple types of data, overlaid on a map of a structure of the
composite graph. The graphical user interface further com
prises an attribute editor panel for the user to work on
attributes of any of the first and second items. The graphical
user interface further comprises: a timeline panel providing
access to timing parameters for nodes and objects in the
composite graph. The graphical user interface further com
prises an asset panel providing the user access to a pipeline for
bringing rendered images and elements into a project that
includes the composite graph.

Implementations can provide any or all of the following
advantages. An artist can quickly change the context in which
the artist is viewing and working on a portion of a graph
without destroying the current selection. A hybrid outliner,
columnar, and windowing approach to graph representation
can enable quick access to sections of the graph regardless of
location in the topology. Flexibility of navigation can make it
easy for the user to expand his or her graph.
The details of one or more implementations are set forth in

the accompanying drawings and the description below. Other
features and advantages will be apparent from the description
and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 shows an example system that can be used for
visually representing a composite graph of image functions.

FIGS. 2A-B show examples of expansion modes.
FIG. 3 shows an example of image functions in a scratch

area of a graphical user interface.
FIG. 4 shows an example of containers with image func

tions.
FIG. 5 shows an example of information in a container

header.
FIGS. 6A-D show examples of revealing the path of an

isolated container.
FIG. 7 shows an example of expansion in an outline expan

sion mode.
FIG. 8 schematically shows an example of expansion in a

column expansion mode.
FIG.9 schematically shows another example of expansion

in a column expansion mode.
FIGS. 10A-B show other examples of expansion in a col

umn expansion mode.
FIGS. 11A-C show examples of operations in assembling

image functions into an order inside a container.
FIG. 12 shows an example of views into a visual represen

tation of a composite graph.
FIGS. 13 A-C show examples of icons corresponding to

viewer Snapshots of a visual representation of a composite
graph.

FIGS. 14A-B show examples of groups of items.
FIG. 15 is a block diagram of a computing system that can

be used in connection with computer-implemented methods
described in this document.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

FIG. 1 shows an example system 100 that can be used for
visually representing a composite graph of image functions.

US 9,035,949 B1
5

In some implementations, the system 100 can be imple
mented using a computer device Such as a server computer, a
work terminal, a personal computer or any kind of processor
based device that processes images. In examples below, it will
be described that image processing functions can be struc
tured in a composite graph to define the order of operations to
perform in rendering an image. For example, the image pro
cessing functions can be visualized as a composite graph of
items representing image functions, or containers including
items, and a user can view and/or manipulate the composite
graph in one or more ways.

Here, the system 100 includes a processing unit 102, for
example a computer device, and input device(s) 104 and
output device(s) 106. In some implementations, the user
interacts with the computer device using a mouse, keyboard,
track ball or other input device, and can view visual outputs
on one or more display devices. The system 100 can be
connected one or more networks for purposes of exchanging
information or data, and/or to share processing resources.
The system 100 includes an image processing module 108

that interacts with a user interface management module 110
and a graph management module 112. In some implementa
tions, the image processing module 108 controls the graph
management module 112 to generate outputs (e.g., panels for
display), and controls the user interface management module
110 to display the panel(s) on the output device 106. For
example, the displayed output can allow a user to define a
composite graph for processing an image 114. Such as one
frame of an animation. The image 114 can be rendered by a
renderer 116, for example to store the rendered image in the
system 100 or elsewhere, and/or to display the rendered
image on the output device 106 or elsewhere. In some imple
mentations, the image 114 is rendered as part of an animation
and Such rendered images can be assembled in order and
projected as part of a video or a motion picture.
The graph management module 112 here includes compos

ite graph(s) 118. In some implementations, the graph 118
defines a structure of image functions that are to be performed
in processing the image 114. For example, image functions
can be organized in a linear order and processing can begin
with applying the function that is at one end of the order and
can then proceed through each listed function until the func
tion at that is at the other end has been performed. In some
implementations, the ordered functions can be considered a
stack and the processing can then go from the bottom function
to the top function. Other structures for organizing and/or
processing the functions can be used.
The graph management module 112 allows the user to

create, organize, manage, modify and use the composite
graph(s) 118. For this or other purposes, the graph manage
ment module 112 can generate one or more panels 120 that
can guide the user's work and help visualize the composite
graph(s) 118, or at least relevant portions of it. Each or all of
the panels 120 can be displayed in a graphical user interface
on the output device(s) 106 by the user interface management
module 110. Examples of the panels that can be generated and
displayed will now be described.
Agraph stack panel 120A can provide a visualization of the

image processing structure in a composite. In some imple
mentations, the graph Stack panel 120A helps the user create
composites by providing an interface to Snap image process
ing functions together for producing the image.
A viewer panel 120B can show a rendered composite with

which the artist is currently interacting. In some implemen
tations, the viewer panel 120B can be used to isolate a portion
of the graph. For example, the user can, if so desired, isolate
a portion of the graph to show only a part of an extensive

10

15

25

30

35

40

45

50

55

60

65

6
composite that is too large to be meaningfully displayed on a
screen, or too large for the user to overview in its entirety.
A project panel 120C can allow the artist (i.e., the user) to

interact with and manage contents of their project. In some
implementations, the project panel 120C lists composites that
are included in the project, and can provide access to the
Sources that provide content into the project. As another
example, the project panel 120C can allow the artist to main
tain notes about the project, and/or handle a rendering queue
for the artist’s work.
A composite map panel 120D can provide a single location

for the user to cross reference multiple types of data. In some
implementations, the composite map panel 120D can overlay
such data on a "Map of a given composite's structure. For
example, by centralizing the display of data into a single
location, the artist can quickly see areas of a composite with
indication of one or more of the following: render progress,
render times, cache status, locations of clones, non-image
data flow, etc. As another example, the artist can use the map
as a navigation tool to quickly populate other panels with
portions of the graph. In some implementations, the develop
ment for these types of data can be centralized and built up
over time.
An attribute editor panel 120E can serve as a shelf where

the artist can park attribute editors for different nodes in the
GraphStack. In some implementations, this provides a central
facility to work on multiple objects at once, and this allows
the user to quickly edit multiple objects side-by-side and/or
fluidly control their respective composite(s). For example,
planned flexibility can here allow the artist to create a layout
of specific attributes they wish to control in a composite, and
save the layout as a remote control. An advantage of such an
approach can be the speed with which disparate portions of a
composite can be edited.
A timeline panel 120F can provide access to timing param

eters for nodes and objects in a composite. In some imple
mentations, the timeline panel 120F includes the ability for
the user to keyframe parameters of objects as well as to trim
objects in time.
An asset panel 120G can provide the user access to the

pipeline for bringing rendered images and elements into a
project. In some implementations, the asset panel 120G can
have a direct connection to one or more libraries, for example
a linear algebra software library, and/or to a pipeline. For
example, Such connection(s) can bypass one or more inputs/
outputs that are specific to the file system, such as “Open’ and
“Save” dialogs.

FIGS. 2A-B show examples of expansion modes. In a
panel 200, a container 200 called “Compa” (a short term for
“Composite A) is currently shown. The container 202
includes a number of items 204 that can be either image
functions or another container.

In some implementations, building up a composite graph
starts with a layer-based or outliner approach to compositing
Sources with one another. For example, stacking source con
tainers atop one another composites them together. The stack
ing principle can rely on a rule Such as: Bottom Background,
and Top-Foreground. That is, the bottom most item in any
container or graph is to be performed first and corresponds to
the background of the image. The topmost item, in contrast, is
to be performed after the other function(s) and corresponds to
the foreground of the image.
Some or all of the following can apply to all containers:
Containers serve to hold built-in nodes with a predictable

wiring scheme to enable compositing to happen.

US 9,035,949 B1
7

The top level of a composite is named a Comp Container.
There can be multiple composites in a single higher
level structure, for example a project.

Containers have a Composite Mode to composite the con
tents with what is below them in the stack.

Containers have a mask which is applied to the contents of
the container prior to the Composite mode.

Containers can have an arbitrary number of contents
stacked inside them which are evaluated in order from
the bottom to the top of the contents.

Some or all of the following can apply to all functions:
Functions can only exist inside of another container.
Functions operate on all objects below them in the stack.
Functions have no composite mode.
Functions can have masks associated with them.
The mask on a function can be applied before or after the

function.
Here, the items 204 include an “Explosion' item 204A, a

“Bumblebee' item 204B and a “Reference 1 item 204C,
among others. For example, the “Explosion' item 204A can
be a container that includes one or more image functions to be
applied when generating an explosion on the image. The
“Explosion' item 204A is currently in a closed state inside the
container 202, so the panel 200 does not currently show any
image function(s) and/or container(s) that may be inside the
item 204A.

In contrast to the item 204A which is in a closed state, the
“Bumblebee’ item 204B and “Reference 1 item 204C are
both currently in expanded states. For example, the item 204B
has been opened in what is here referred to as a columnar
expansion mode, and the state of the item 204C is here
referred to as an outline expansion mode.
The columnar expansion mode corresponds to a specific

way of visualizing the contents of the item 204B. Here, an
expanded container 206 corresponds to the “Bumblebee'
item 204B and shows the contents thereof. The expanded
container 206 can include one or more containers, for
example a “Right Foot' container 208, and/or it can contain
one or more image functions, for example a "Flare' image
function 210. For example, the “Right Foot' container 208
can include one or more image functions that when executed
on the image 114 generates the appearance of a right foot on
the bumblebee, and the image function(s) can be repeated a
number of times corresponding to the number of right feet
that the animated bumblebee has (e.g., three). Similarly, the
“Flare' image function 210 when executed can generate a
flare effect on the image 114, such as on the portions of the
bumblebee that have been visualized by the image functions
performed so far.

Here, the expanded container 206 is seen to be displayed
next to the container 202, because the expanded container 206
was generated by expanding the “Bumblebee' item 204B
which is a container included in the container 202. Particu
larly, the expanded container 206 is visually connected to the
item 204B to indicate the relationship. Also, the expanded
container 206 can be located in relation to the container 202,
for example such that they have their upper edges aligned (as
here), or bottom edges aligned, or such that the expanded
container 206 is centered on the item 204B or on the container
202, to name just a few examples.

Thus, in the columnar expansion mode the contents of the
item 204B are here shown relatively close to the entire con
tainer 202, which is the context in which the item 204B
occurs. This can help the user understand the nature of the
image functions in the item 204B and to put them in proper
perspective. In some implementations, the expanded con

5

10

15

25

30

35

40

45

50

55

60

65

8
tainer 206 can appear on the other side of, or in some other
way near, the item 204B and/or the container 202.

In contrast to the columnar expansion mode, the “Refer
ence 1item 204C is expanded in the outline expansion mode.
Here, the item 204C has contents 212 that are displayed below
the header of the item 204C, in a vertical direction generally
downward in the visual representation of the composite
graph. The contents 212 here include “Color Correction' and
"Blur image functions, whose names reflect their respective
functions when executed. The contents 212 are offset hori
Zontally to indicate that they are not located at the same level
as the items 204B. Also, the order of the "Color Correction'
and “Blur image functions in the contents 212 indicates the
order in which the functions will be performed (e.g., by
starting at the bottom the “Color Correction' function will be
performed before the “Blur function).

Here, the contents 212 are seen to be displayed generally
within the container 202. This is in contrast to, for example,
the expanded container 206 which was displayed outside the
container 202. Some or all of the other items 204 can be
displaced to accommodate the contents 212. For example, the
items 204B,204C and others are here moved downward in the
container 202. Displaying the contents 212 in the outline
expansion mode can help the user understand the contents
role and position in the overall sequence of the composite
graph. That is, the user sees the “Color Correction' and
"Blur image functions in a place that indicates where in the
overall “Comp A' process they will be performed. The panel
200 provides drag-and-drop functionality, so the user can
drag any of the items from one location and drop it at another
location, to modify the order that image functions will be
performed. In some implementations, one or more other input
functions can be used to arrange the items in a selected order.
The two expansion modes can apply to essentially every

container. Here, an arrow symbol 214 can be used for choos
ing the expansion mode. For example, on any of the items in
the container 202 or in the expanded container 206 the user
can “tug the arrow symbol 214 (e.g., using a mouse or other
pointing device) in a horizontal direction to expand the cor
responding item using the columnar expansion mode. For
example, in the item 204B, which is currently expanded using
the columnar expansion mode, the symbol 214 is currently
shown in an opposite direction, for the option of tugging the
symbol 214 in the opposite direction to again collapse the
expanded container 206 into the item 204B. As another
example, the user can tug the arrow symbol 214 in a vertical
direction on any of the items in the container 202 or in the
expanded container 206 to expand the corresponding item
using the outline expansion mode. If the arrow symbol 214 is
tugged (or otherwise activated), corresponding to one of the
expansion modes, on an item that is currently expanded using
the other expansion mode, then the item can be changed from
the current expansion mode directly into the new expansion
mode without being placed in a collapsed State in between.
Other input controls for choosing between expansion modes
can be used.
The user can “tear off one or more containers from their

current position in the composite graph and place it or them at
one or more other locations. This is useful in that it can let the
user bring disparate portions of the composite graph together
for convenient access. In other words, views of different
graph portions can be generated, in arbitrary relation to each
other, regardless of where in the topology of the composite
graph the portions are located. In some implementations, the
user can drag the arrow symbol 214 on any of the items in the
container 202, or in the expanded container 206 to a blank
space, to open that selected branch in isolation. For example,

US 9,035,949 B1

as illustrated in FIG. 2B, a "Gun' window 216 can be dis
played after such a dragging. That is, the expanded container
206 here includes a “Gun' item 218 and the user can drag its
corresponding arrow symbol 214 to an arbitrary location to
trigger display of the window 216.

In some implementations, one or more keyboard shortcuts
can be used to manage items and containers. For example, a
keyboard shortcut of one or more keystrokes can be used to
place a selected containerata chosen location in the graph. As
another example, a keyboard shortcut can be used to select the
expansion mode for a selected container.

After the window 216 is opened, the user can close, relo
cate or otherwise manipulate some or all of the remainder of
the container 202 and/or the expanded container 206, without
affecting the window 216 in its present location. This can
allow the user to remove all composite graph portions that are
not immediately relevant to the task(s) that the user is about to
perform. Moreover, the order of image functions in the con
tainer 202 is not affected by the dragging. For example, the
expanded container 206, which shows the contents of the item
204B, still has the “Gun' item 218 in the same place as before
the window 216 was opened. Therefore, the image
function(s) corresponding to the “Gun' item 218 will be
performed at the same place in the overall order of functions
as before. On the other hand, if the user manipulates the
window 216 in certain ways, for example to add or delete an
image function, or to reorganize the image functions that are
currently therein, then the order of those functions is modified
in the overall composite graph. The window 216 and the
“Gun' item 218 in the expanded container 206 both have a
proxy indicator 220 to indicate that the container is a proxy
and is used in more than one location of the composite graph.
A workspace can provide visualization and editing of

graph stacks. In some implementations, a workspace can be
implemented as a desktop feature that lets users view their
graph as they desire. The workspace can have Scroll bars
when necessary to navigate the graph. The workflow of the
graph stack and multiple panels can enable the user to work in
a manner which requires less focus on navigation by panning.
For example, Zooming in or out of the desktop may be unnec
essary. In some implementations, the interface is generated in
a fixed resolution. Containers and widgets in the graph stack
can be collapsed and expanded for the user to enable a com
parative workflow. In some implementations, a workspace
contains at most one expanded view of each container. If there
are multiple workspaces, for example organized using sepa
rate tabs in a graphical user interface, then a container can be
open in more than one, or in all, of the workspaces.

FIG. 3 shows an example of image functions in a scratch
area 300 of a graphical user interface. Every container or
function in a graph stack is a location in the graph. The initial
state of a container or function isolated in the graph stack is
referred to as a window mode. This is a starting point for
performing work on a branch of the graph. When containers
are isolated, they represent a “window' which can reveal
descendants from their vantage point in the graph. In some
implementations, containers and functions are defined as fol
lows:

Containers have contents (i.e., one or more other items),
and functions do not.

Containers can be opened (e.g., to visualize the other
item(s)), and functions cannot.

In some implementations, the default state of a container in
the graph stack is that the container is open with its first level
of contents revealed. If a container has no contents, it is closed
by default. A function as an isolated element in the graph
stack workspace appears similar to a container that has no

10

15

25

30

35

40

45

50

55

60

65

10
contents. For example, both functions and containers can be
represented by the basic “pill' shape of a node.

In operation, the artist can in some implementations dragor
otherwise move an element from a project panel into a graph
stack workspace. For example, the artist here has dragged a
function item 302 into the scratch area 300. The item is then
placed in the graph stack workspace in its default state. Here,
the function item 302 is placed at the user's selected point
among container items 304. If the artist drags the node into a
container, an insertion point indicates where the item will be
placed in the stack.

FIG. 4 shows an example of containers with image func
tions. In some implementations, windows in the graphical
user interface will have a Z index in the graph stack work
space. For example, windows can be allowed to overlap one
another. Selection of a window will bring it and any attached
children (e.g., from outline mode or column mode) to the
foreground. In some implementations, there is no grid in the
workspace and windows are allowed to be moved freely about
the workspace without Snapping to one another. For example,
a container 400A is here shown overlapping an expanded
container 400B and a collapsed container 400C.

In some implementations, an expanded container in win
dow mode has the primary elements of a header, contents and
a footer. The header is located at the top of the open container
and is represented as a horizontal bar. The header can be
comprised of indicators and controls for the container. The
top corners can be rounded with the bottom corners squared
off. The rounding of the corners can be the same radius as the
collapsed container when represented in the pill shape, e.g.,
10 pixels. The contents are represented in the open area
between the header and the footer. The footer is represented in
the bottom bar of the open container. The bottom right corner
can serve as a drag handle to resize the width of the container.
In some implementations, the container shows the drag
handle when the user places the cursor over the footer.
When the container is collapsed, only the icons in the

header may remain visible. The collapsed container can look
like a single pill shape on the graph Stack workspace, with the
same contents as the header when open.

FIG. 5 shows an example of information 500 in a container
header 502. An Active Toggle 502A controls the active/inac
tive state of the node or container.
A Disclosure Toggle 502B opens the container to reveal its

contents. In some implementations, there are 3 ways that the
Disclosure Toggle 502B can expand a container: an outline
mode, a columnar mode that expands horizontally in a sepa
rate column, and a window mode. The user can click the
Disclosure Toggle 502B to expand the item using the last
method the user interacted with. If the container is already
expanded, the Disclosure Toggle 502B collapses the con
tainer back to the collapsed representation.

In some implementations, the user can tug the Disclosure
Toggle 502B to the right to expand to the right in a column.
The user can tug the Disclosure Toggle 502B downwards to
expand in outline form. For example, a tug can be the equiva
lent of a short drag, a delta offset from the mousedown posi
tion, such as of 40 pixels. This method can be evaluated
against a "click” and how either event is processed.

In some implementations, the user can drag the Disclosure
Toggle 502B to a blank area of the workspace to open this
container in its own window.

Subsequent clicks on the disclosure toggles of other con
tainers performs the last action for disclosure which the artist
used. For example, this can allow the artist to quickly expand
items in the same manner as desired.

US 9,035,949 B1
11

A Composite Mode control 502C is a pulldown/toggle
hybrid control which sits near the left edge of the widget. The
Composite Mode control 502C can provide a pulldown menu
which lets the user quickly see what is the current composite
mode of a container and edit it in the graph stack. The menu
can have the previous state of the composite mode at the top
of the list before the standard list of composite modes. For
example, this can enable the user to quickly return to the
previous composite mode. As another example, Alt+Click
can be used to enable this functionality. Icons can appear on
the left of the pulldown menu with the title of the composite
mode on the right. Frequently used composite modes can
have a unique icon for the composite mode. Less frequently
used modes can have a more formulaic representation.
A Path reveal button 502D.1 reveals the path to the con

tainer or function and allows the user to select a parent to open
in the graph stack workspace. Examples involving the Path
reveal button 502D.1 will be described below with reference
to FIGS. 6A-C.
A Name 502D.2 is the name of the node or container and

may be assignable by the user. A close button502E is used for
closing. In some implementations, clicking this button closes
the object from the current graph stack workspace without
deleting the container. This button may be active only when
the container or node is in “window' mode, i.e. when it is
isolated in the workspace of the graph stack. An Indicator
Field 502F shows information about a node or container. The
type of information revealed can be user assignable for the
current graph Stack workspace.
A Mask Disclosure button 502.G can function as a hybrid

of an indicator and a button. For example, it can indicates
whether the mask has contents and/or if it is being used. As
another example, it can expand the mask container. In some
implementations, an 'm' icon on the right hand edge of the
container controls disclosure of a mask for a container or
function. Additionally, the icon can allow the artist to disable
or enable a mask using by holding down the Alt key when
clicking on the button. The status of the mask can be indi
cated, for example by varying how the icon is drawn. Possible
states include, but are not limited to:
Mask does not have contents. This can indicate that the

functions or container's mask does not have any inputs
to the Mask container.

Mask has contents. This can indicate that that a function or
container has inputs to the Mask container, but the mask
is closed.

Mask has contents and is opened in the graph stack. This
can indicate that a function or container has inputs to the
Mask container and that the Mask container is open in
the graph stack. A highlighted icon representation can be
the same whether the mask is expanded in columnar
mode, or has been opened in its own window.

Mask has contents but is disabled. This can indicate that the
function or container has inputs to the Mask container
but the Mask container has been disabled.

Mask has contents, is disabled and opened. This can indi
cate that the function or container has inputs to the Mask
container, the Mask container has been disabled, but the
Mask container is expanded in the graph stack.

A Clone Indicator 502H is a region on the widget which
indicates that the container is a clone (e.g., that the container
acts as a proxy for another item) and/or that the container is
used in more than one location in the composite. For example,
when this indicator is present, the path reveal button can allow
the artist to see one or more other instances of the clone and

10

15

25

30

35

40

45

50

55

60

65

12
their hierarchy paths. If a container is expanded, it can have
the clone indicator on both the header and footer of the
expanded container.

In some implementations, a container or function when
seen inside of another container in the graph stack workspace
does not have some of the elements which are visible when
the container is isolated in the graph Stack workspace in
window mode. For example, a window in a workspace may be
required to perform two functions which sub-objects visible
inside another container do not require:
Be subject to removal from the visible workspace via a

"close” function.
Be Subject to inheritance from a parent container.
Therefore, in some implementations, the Path reveal button

502D.1 and close button 502E may not be visible when a
container or function is shown inside another container in the
graph stack workspace.

In some implementations, the following guidelines can
apply when the user seeks to move a container. The container
can be moved by dragging on the name of the container.
Renaming the container can require a double-click on the
name String to invoke the String editor and edit the name of the
container in place. Additionally the container can be moved
by dragging the footer of the container when the container is
opened. Scratch containers can behave the same in all
respects, can be renamed and closed with their respective
controls. Dragging a scratch container into another container
can create a generic container with the same name as the
scratch container and set it to a default composite mode.
When the container is being moved around inside of the graph
stack workspace, the container (and its contents if open)
should move along with the user's cursor. No ghosting of the
element may be necessary. When dragging a contained item
from one open container to another, the representation of the
item being dragged can ghost to a semi-transparent opacity in
order to allow the user to see placement of the object into
another container. When dragging any container outside of
the graph stack workspace window, a ghosted representation
of the current item can be used to follow under the user's
cursor. For example, dragged items may be ghosted only
when they leave their own container. This can illustrate the
difference between dragging contents versus dragging a top
level item. If an artist drags a container or function, that is
already in window mode, from its isolation in the graph stack
workspace into another open container, the receiving con
tainer can be highlighted when the artist’s cursor is over the
recipient container. The representation of the container or
function can then ghost to a semitransparent value. Addition
ally, a highlight insertion point can be shown at a location in
the recipient container where the dragged object will be
inserted. As the user drags an item about the graph stack and
to other panels which can accept a drop event, any window/
tab/panel which can receive the event can be highlighted to
indicate that the object will receive the item being dragged.

FIGS. 6A-D show examples of revealing the path of an
isolated container 600. Here, the container 600, entitled
“Container expanded' is in window mode and its contents—
another container 602 entitled “Container collapsed’—are
shown. In some implementations a Path reveal button 604 is
only visible in containers that are isolated in the graph stack in
window mode. Upon user activation, this button shows the
path to the current container from the root of the composite or
scratch container which owns it. Here, a path 606 leads from
the “Current Container” to a "Robot Blur Mask’ container,
from there to a “Robot Blur” container, from there to a
“Robot' container, and from there to a “shot rbt257 con
tainer.

US 9,035,949 B1
13

In the case of clones, several possible paths to the root can
be revealed, for example as multiple horizontal path bars or
“Breadcrumbs' stacked vertically when the user presses the
button. The artist can select from one of the levels of the
containers heritage, or dismiss the popup by clicking else
where outside of the popup menu.
When multiple paths to a clone are available, the currently

selected instance can be shown as the path closest to the
selected item. Here, for example, another path 608 (FIG. 6B)
can be displayed, that includes a “Helicopter Mask’ con
tainer, a “Helicopter container, and then the “shot rbt257
container, which in this example is the same root as in the path
606.

In the path breadcrumb representation, each level of the
hierarchy can have two parts:

1. Name of Parent The name of a parent for each level in
the path hierarchy.

2. Siblings Popup—An icon which reveals the siblings at of
each of the levels in the path.

If the artist wishes to see the stack of siblings at a given
level of the hierarchy, the artist can hover over the siblings
indicator next to each container in the hierarchy to see the
stack revealed as a vertical list. Here, hovering over the
“Robot Blur container can reveal a sibling menu 610 (FIG.
6C) where the user can select any or all of the sibling items.
When the cursor leaves the vertical stack popup, the bread
crumb path can remain visible as it was initially.
Any sibling can be selected and revealed in the graph stack

workspace. If the user selects any of the parents in the hier
archy path, the currently selected container is closed and the
parent which was selected in the path replaces the current
window.

In the Path breadcrumb the user can drag the Path reveal
button 604 from the current container up to an arbitrary level
of the path. For example, the user here drags from the current
container 600 (FIG.6D) up to the “Robot” container, which is
the second-highest level in this example. Doing so will open
the parent of the “Robot” container here the “shot rbt257”
container—and disclose the container or function at which
the user ended the dragging (e.g., where the user dropped the
dragged button). If the dragged-to item is a container, then it
can be expanded (e.g., using the columnar expansion mode)
so that its contents are visible. The current object can remain
selected and its attributes can be visible in an attribute editor
if open. In some implementations, this operation can also be
performed upon the user holding down the shift key when
clicking on the parent item.

In some implementations, modifier elements can perform
different functions when held down while clicking one of the
parents in the path hierarchy. For example: holding down the
Shift key when selecting (e.g., when clicking) any level
higher than the current level will reveal the parent container
and expand to reveal the currently selected object. The current
object can remain selected and its attributes can be visible in
the attribute editorifopen. In some implementations, the user
can alternatively accomplish this by dragging across bread
crumbs. This can have the advantage of allowing an artist to
quickly change the context in which the artist is viewing and
working on a portion of the graph without destroying the
current selection. Holding down the Alt key when clicking on
any level of the path can reveal the clicked container in its own
window in the graph stack workspace. A cursor change can
indicate that a new window will be spawned.
The following describes examples regarding layout in one

or more panels. Graph stack nodes can be expanded in outline
mode by tugging downward on a disclosure toggle. A single
container which by default is collapsed in a graph stack work

10

15

25

30

35

40

45

50

55

60

65

14
space can instead be expanded in outline mode. A possible
exception to this involves functions which have no contents
but have a Mask or other secondary input. These can for
example expand to the right in columnar mode only. The
expansion of these inputs may always take place in columnar
mode. Their expansion is initiated from the expansion toggle
on the right and is only way to reveal a secondary input.
Functions have no disclosure toggle.

Representations can be made at any of multiple levels. For
example, a first level of an outline can appear as a list with the
contents collapsed by default. Using a method such as "Alt+
Click” the disclosure toggle can expand all children of the
container in outline mode. In some implementations, all
inputs can be expanded, to reveal all descendants from that
level of the graph.

Contents of a container can be expanded in outline mode.
Doing so can inset each Subsequent level by a predetermined
distance, for example 22 pixels, from one side. Such as from
the left side. The “Active' toggle can remain on the left of the
newly revealed Sub-contents, and can be padded 2 pixels from
the left of the top level container in the window. The container
which is opened will change its representation to have a
header and footer. FIG. 7 shows an example of expansion in
an outline expansion mode. Here, a a "Shot op010 700
includes multiple items, among them a "Cable Source' con
tainer 702. The Cable Source container 702 has been
expanded in outline mode and contents 704 are visible.

Another example of an expansion mode is columnar
expansion. In some implementations, a columnar expansion
mode can be characterized by the following. The graph stack
layout is described here with rules for how to expand and
layout portions of the stack into columnar mode. The layout
of containers in columns have a primary to secondary rela
tionship. The primary column is considered the “Root' of the
relationship of the two columns. The primary column also
manages the vertical Stacking order of the containers. When
more than one container is expanded into the secondary col
umn, the stacking order of the primary column controls the
Vertical stacking of expanded items in the secondary column.

Other considerations that in Some implementations can
guide the final rule set include:

Expanded containers should be non-overlapping. As in the
outline view of a stack, expanded containers in columnar
mode can avoid one another in the same column.

Horizontal expansion, Such as to the right, can be done with
the purpose of maintaining a relatively small distance to the
insertion point in the root stack. Expansion of a container or
node to the right should be done as closely as possible to the
vertical center of the item in the primary column. This can be
considered a “Vertical Centric' approach with the root object
in the primary column being the center about which to deter
mine the rule for vertical placement of the expanded item into
the secondary column.

Usability testing can be used to verify interactions and
proximity in cases of multiple expanded items.
A minimum vertical width of a column can be defined. A

horizontal width of each column could be adjusted by the user
via a vertical splitter handle which could be invisibly located
on the right edge of each column. The cursor should change to
reveal the splitter handle. Additionally, a mouse-over could
indicate that the tool is available, by highlighting a vertical
bar on the right edge of the column. Adjusting this bar would
adjust the columns width to the left of the splitter and drag
the right-hand columns along with it.
The primary column acts as the parent item. When a user

drags the primary column via its header, the secondary col
umn(s) can follow the parent without disrupting their current

US 9,035,949 B1
15

relative positions. This means that transforming the parent
object transforms its children so that they act as a 'group'.

Expanded containers can be slid vertically. By default con
tainers expanded into a column are centered on their horizon
tal axis with the node in their parent’s column on the left. The
artist can slide the contents of a secondary column vertically
by dragging one of the headers in the column up and down.
All contents of the column will slide as a unit maintaining
their vertical layout. If columns are expanded into a third
column, this will move them vertically also. Anile of thumb
can be that columns on the left hand side have the ability to
slide the vertical positions of column items on the right hand
side.

Another column can be assigned upon the user slides an
expanded container further in the direction of the columnar
expansion. When multiple nodes in the primary column are
expanded into the secondary column, dragging the header or
footer of a container in the secondary column to the right will
place the expanded container into a new, third column. There
must be a minimum of one container remaining in the sec
ondary column, or else the dragged container should remain
in the secondary column.
When a new column is spawned, the goal of Vertical cen

tricity should apply to the layout of the new column. Addi
tionally, the previous column should collapse space where
possible to keep the vertical height as compact as possible
without re-routing nodes extenders.

Multiple overlapping stacks can be permitted in a given
graph stack workspace. User selection can elevate a group to
the front in Z-index order and place the group in front of the
other open stacks in the workspace. The columns for a given
group will be relative to one another only. In some implemen
tations, it is not desirable for columns of non-connected
groups to avoid overlapping one another, they are relative
only to their groups contents. This can help reinforce the
relationship of contents to their root.
The user can collapse the window with the disclosure

toggle, and this should trigger the entirety of the windows
contents to be hidden in the workspace. For example, expand
ing the window via the root would re-instate the expanded
secondary columns as they existed prior to collapsing the
window.
By default, closing the root container would close the chil

dren as well. By holding down the Alt key and clicking the
“Close” button in the interface, the user could force each of
the expanded containers in the secondary columns into its
own “window' modes, leaving them visible in the workspace
for editing.

FIG. 8 schematically shows an example of expansion in a
column expansion mode. Here, a container 800, is located in
a primary column 802. The container 802 is currently
expanded in outline mode, and its contents (e.g., another
container 804) is exposed accordingly. The container 804 is
expanded horizontally using columnar expansion mode.

In some implementations, expanding an element horizon
tally into columnar view extends the pill shape in that direc
tion, and reveals the expanded item in a stack in a secondary
column to the right of the node in the primary column. Here,
the container 804 is expanded into the second column 806 and
its contents 808 are presented. When a single item from the
primary column is expanded, the stack in the secondary col
umn is centered vertically above and below the pill shape
which extends from the primary column. Here, the contents
808 are centered on the container 804.

In some implementations, a thirty-pixel margin can be
created between the right edge of the primary column and the
left edge of the secondary columns. The following is a pos

10

15

25

30

35

40

45

50

55

60

65

16
sible exception to the margin rule: a vertical bar (stem) of a
certain length (e.g., five pixels) can extend upwards and
downwards from the element which is expanded from the
primary column. This five-pixel vertical bar can be drawn in
the thirty-pixel margin.

Showing the container expanded in the secondary column
allows side-by-side comparison to the root. The secondary
columns contents can be centered vertically on the element
from which the container expands from the primary column.
Here, the contents 808 are visually connected to the container
804 using a graphical element 810. It may be desirable to have
the secondary column not extend out of the current view in the
graph stack. In some implementations, some automatic fram
ing behavior can be allowed, and/or the user can be allowed to
drag the header of the secondary column vertically to repo
sition the secondary column, for example to line up horizon
tally with the primary column.

Animation of the object expanding can happen when the
object opens and collapses. The animation sequence can use
a simple wipe in the direction of the action of expansion or
collapsing. For example, when the container expands, using a
simple horizontal wipe of the container from left to right over
a 0.3 second interval can communicate to the user that the
object is expanding to the right. To collapse, a simple wipe in
the opposite direction from right to left can have the same
implication to the user.
A wipe can be used to reveal an expansion of part of the

graph stack. Zooming up from Small to large should be
reserved for showing a window of detail of a different type of
data. For instance, showing a HUD or In-Context Editor with
a connection to the node it is editing could be done with a
Zoom "Pop-Up' approach to represent that the data being
revealed is a detail of the current object.

In some implementations, more than one container can be
expanded into another column concurrently. FIG.9 schemati
cally shows another example of expansionina column expan
sion mode. Here, primary-column containers 900A and 900B
are expanded horizontally to show corresponding containers
902A and 902B, respectively. The vertically centric rule can
be followed when expanding two or more items in the sec
ondary column. For example, each item can expand with
respect to the stacking order represented in the primary col
umn. This can preserve continuity of the layout and the mean
ing of the stack regardless of which column the items are
expanded in. For instance, when expanding in outline mode in
the primary stack the containers would expand in place and
the meaning of the stack would be preserved.

Collapsing one of the two containers 902 in the secondary
column can force the other to become vertically centric, for
example as shown in FIG. 8, with the difference that the
container 800 would have two items instead of one as shown
in that example. Vertical centricity of the bounds of the sec
ondary column against the vertical bounds of the root nodes
being expanded from the primary column can be selected
based on usability testing. A two-pixel padding can be main
tained vertically between stacks in the secondary column to
match up with a two-pixel padding of stacked elements in the
graph stack.
The transition from a single open item to two or more open

items in the secondary column can be animated, for example
along the lines described above. For example, the pre-ex
panded Stack can be moved up or down in the secondary
column to accommodate the newly expanding element. The
expanding element can then complete the animation by being
revealed in the secondary column, with a wipe from left to
right. Collapsing one of the items would simply reverse this
sequence of events.

US 9,035,949 B1
17

FIGS. 10A-B show other examples of expansion in a col
umn expansion mode. Here, four containers 1000A-D that are
in close proximity of each other are expanded from the pri
mary column into the secondary column. In the secondary
column, corresponding containers 1002A-D are visible. The
containers 1002A-D are symmetrically placed with regard to
the primary-column containers 1000A-D. For example, the
centermost two expanded containers 1002B and C are con
nected to the corresponding containers using essentially lin
ear visual elements in the margin between the primary and
secondary columns. The visual elements for the outer
expanded containers 1002A and D, on the other hand, are
non-linear to accommodate the positions of these containers,
which are offset vertically. This arrangement reinforces the
vertical centricity for the user. Minimum padding is here
illustrated using the two-pixel margin.

Vertical placement can be judged by overall proximity of
the contents of an expanded item in the secondary column to
its root in the primary column. Placing the expanded item at
a minimum distance may be desirable. It may be useful to
allow the user to slide the entire secondary column on the
Vertical axis by dragging one of the headers vertically in the
column to adjust the entire stack of open containers. This
would shift the neighbors up and down, in a sense analo
gously to the situation where the container being dragged is
the parent of the group of containers.

The user can rearrange one or more items, such as an
expanded container. FIG. 10B shows that the user has caused
the centermost two expanded containers 1002B and C to be
relocated into a third column 1004. The expanded columns
1002A and D were not included in the dragging in this
example and therefore remain in the secondary column. Here,
the expanded columns 1002A and D have been adjusted ver
tically into a close proximity of the visual elements that
connect the expanded containers 1002B and C with their
corresponding containers in the primary column. This can
correspond to a vertical splitting of the secondary column into
“high/low regions with close proximity nodes in the primary
column. The containers 1002A and Dare oriented above and
below the centerpoints of the corresponding primary-column
containers, in analogy with how the containers 1002B and C
were placed in FIG. 10A. The horizontal grid spacing can be
maintained for any of an arbitrary number of created col
umns. The user can drag the vertical/middle items horizon
tally (e.g., to the right). Such as using the header or footer of
the node, to collapse the vertical space if needed. In some
implementations, the above configuration makes it possible
to use any of three columns and eight expanded nodes.
Because the visual elements by which the expanded columns
stem from the first column pass through the secondary col
umn on the way, the columnar expansion may be essentially
limitless. In some implementations, the rule set could allow
expansion essentially to an infinite degree, using four groups
per column. The example shown in FIG. 10B can be useful in
helping the user maintain a series of open containers with
respect to the root of the stack, and it only requires relatively
little vertical space.

FIGS. 11 A-C show examples of operations in assembling
image functions into an orderinside a container. Nodes can be
dragged from one container to another in the graph stack to
re-arrange the nodes. As another example, the user can move
an open container by dragging its title in the header. Doing so
has all the same interactions as a collapsed node. In some
implementations, the collapsed version of the container is
used to illustrate dragging of the expanded container to sim
plify the representation. When the artist drags a node, the
following set of behaviors can occur:

10

15

25

30

35

40

45

50

55

60

65

18
The object being dragged can be highlighted in the graph

stack workspace with a one-pixel 50% opaque white outline
around the node's edge. The object being dragged can also
have a soft drop shadow to visibly lift it from the other
contents of the workspace. This can happen for each selected
node. A 50% opaque copy of the object being dragged can be
attached to the user's cursor. Here, a user is currently drag
ging a function 1100 labeled “Function' over a container
1102.

In cases of multiple nodes being dragged, the nodes can
group together neatly into a single ghosted Stack under the
cursor. When placed, in their new location, they will be orga
nized in this order. They can stack in an order that satisfies the
following rule-set:
When the order matches the order of the nodes in the stack

in which they came from, then the negative space
between nodes is collapsed to a single unit.

When nodes are selected from different containers in dif
ferent parts of the graph, the entire tree stacking order is
considered.

In cases where there are ambiguities of stacking order due
to clones, container stacking is first considered, then
user ordered selection is considered. The user can select
from multiple containers and each node's local stacking
with its siblings should be true. The order of clicking can
establish the order of the families of nodes under the
final drag operation. In some implementations, there is
no visible grouping but the ghosted Stack can reflect that
the nodes are next to their siblings first, and then families
are stacked by order of which family was selected first.

The family of nodes that was last selected will be on top of
the ghost stack.
At the position where each node resided prior to the drag

operation, its representation can be grayed out to 50% of its
opacity. No space is collapsed. In the case where there are
multiple nodes which are selected this can happen for each
node. This can help the artist easily see where their objects
came from.

While the user is dragging around the graph stack, other
receiving containers should react to the cursor with various
behaviors based on the type of object the cursor is currently
OVer

The following are examples of rules that can be applied
when the dragging cursor is inside any open container. While
the artist drags the object up and down in the stack, the nodes
which are in the container can remain static. As the artist drags
the node or nodes up and down the stack, an insertion point
indicator can show where the nodes will be placed in the
stack. For example, in FIG. 11A, the insertion point for the
function 1100 is currently shown between functions in the
container 1102. In the case of multiple nodes being dragged
simultaneously, only one insertion point will indicate where
the group will be dropped into the container. The container
silhouette (header and footer included) inside which the cur
sor is currently hovering can have a highlight of a one-pixel
75% opaque white outline to indicate that the container will
be receiving the nodes under the cursor. For example, in FIG.
11B a container 1104 is currently highlighted because the
function 1100 hovers over it. If the container inside which the
cursor is currently hovering cannot accept the node(s) being
dragged, the container silhouette (header and footer included)
can highlight with a one-pixel 100% opaque red outline to
indicate that the container will not accept one or all of the
node(s). For example, in FIG. 11C a container 1106 cannot
accept the function 110 that is being dragged over it and the
container 1106 is therefore highlighted. Hovering the cursor
over the header of the container will show the insertion point

US 9,035,949 B1
19

at the top of that container's stack. Hovering the cursor over
the footer of the container will show the insertion point at the
bottom of the stack. Some additional rules may apply to what
nodes can be at the bottom of a container depending on the
container type.
The following are examples of rules that can be applied

when the user drags an item onto a collapsed window or
container. A collapsed container can first be highlighted with
a special container targeted highlight. The highlight can be a
one-pixel 100% opaque white outline around the silhouette of 10
the container with 45° short white one-pixel lines extending
from each rounded corner of the shape, resulting in a cross
hair target representation. If the user does not keep the cursor
hovering over the container for at least a predefined interval
(for example a one-second, and/or user-defined, interval), and
instead continues moving around the workspace, then the
targeted highlight disappears and nothing happens. If the user
keeps the cursor hovering over the container for an interval
greater than the predefined interval, the container can auto
matically expand in outline mode and reveal its contents. The
expanded container can now have a highlight around its sil
houette. An insertion point indicator can follow the cursor as
the user moves the cursor through the stack. If the cursor
leaves the container that was automatically expanded by the
user's hovering during a drag event, that container can col
lapse after a predefined interval (for example a one-second,
and/or user-defined, interval). This lets a user investigate
where they may want to drop the contents of the cursor prior
to committing to it, or else cancel the drag operation. If the
container over which the user is hovering the cursor cannot
accept the contents of the drag operation for any reason, the
container can first be highlighted, for example with a special
container targeted highlight, optionally with the exception
that the color can be red. This will indicate to the user that the
object will not accept the contents of the dragged item. A
container which cannot accept the contents of the drag for any
reason should still expand after the predefined interval.

In some implementations, the user can cancel a drag opera
tion, for example by hitting the Escape key at any time before
releasing the mouse button. This can leave each originally
selected element in its original locations and can leave it or
them highlighted and selected.

The following are examples of rules that can be applied
when the user is dragging nodes from the graph stack to other
panels. Nodes can be dragged to other panels to view a node
in the type of panel to which the node is dragged. The receiv
ing panel determines the way in which to represent the node.
Regions of the panels can have different meanings and allow
the artist to perform different operations in the interface based
upon where in the panel a node is dropped. A list of example
panels which can receive nodes includes, but is not limited to:
A viewer panel. Dragging into the panel and dropping a

node onto the viewer can set the viewer to be above the node
dropped in, and can refresh the front-most tab with the render
from that point in the graph stack. Dragging into the panel and
dropping the node onto the tab bar can create a new viewer
with the same position in the graph as described above. Hold
ing down the Alt key and dragging into the image can popu
late the viewer with a view of only the branch of the node
being dragged into the viewer. This can isolate the branch
before the composite mode with the rest of the stack and
render that result in the viewer.
An attribute editor shelf. A user can park the attribute editor

for the node in the attribute editor shelf. The window contain
ing the item can be closed or deselected in the graph stack
workspace. Its attributes can remain live and editable in the
attribute editor shelf. Dragging the item into the tab bar region

15

25

30

35

40

45

50

55

60

65

20
of the attribute editor shelf can create a new tab in the attribute
editor and can park the attribute editor for the node being
dragged into it.

Viewer tabs can be represented in the graph stack to allow
the artist to view different portions of the composite. FIG. 12
shows an example of views into a visual representation 1200
of a composite graph. One or more pointer icons 1202 can be
used to provide views into the graphical representation. This
gives the artist a tool to see selected portions of the composite,
and have control over multiple views into the same composite
at various levels. The viewer object can be dragged about the
graph stack to easily change the position of a viewer. Addi
tionally, by representing it as an object in the graph stack, the
artist can quickly manipulate it with the keyboard.

In terms of representation, the viewer can have two modes
to facilitate work in the composite. These can be represented
in the graph stack by the pointer icon 1202 which can either
point to a container (e.g., the pointer icon 1202A) or to a point
between nodes (e.g., the pointer icon 1202B). In some imple
mentations, pointing to a container means that the viewer is
rendering an isolated branch of the container to which it is
pointing. The composite mode can be bypassed and the
viewer shows the branch prior to its composite. This mode is
only available on containers, not functions.
When pointing is done between nodes, the viewer is ren

dering up to that point in the comp. The result of the compos
ite up to the point and including the node immediately before
the viewericon in the graph stack is rendered. For example, in
an implementation where stacked functions are performed
from bottom to top of the stack, the rendering covers the result
of the composite beginning with the bottom most function and
up to, and including, the node below the pointericon, but does
not include functions higher up in the graph.

There can be four modes of the viewer's icon in the graph
stack:

Foreground tab. This indicates that the viewer is the front
most tab in the viewer panel. When the viewer icon is
selected, there is a heavier white outline on the icon, and a
drop shadow indicates the object is selected.

Background tab. This indicates where the viewer is located
in the graph stack but is behind the other tabs in the viewer
panel. For example, a background tab is visible behind the
pointer icons 1202C-E.

Nested view. This indicates that a collapsed container has a
viewer inside of it. The icon points to the container in which
the viewer resides but is represented in a ghosted mode. For
example, pointer icon 1202F represents a nested view.
Bookmarked view. This indicates that a view has been

saved as a bookmark in the bookmarks bar of the viewer
panel. For example, pointer icon 1202G represents a book
marked view.
There can be two states of the viewer icons in the graph

stack: Selected, which indicates that the object is currently the
active selection of the graph stack, and deselected, which is
the resting state of the icon. For example, the pointer icon
1202A is currently in the selected state and the pointer icons
1202B-E are currently in the deselected state.
Viewer icons can indicate multiple views. In some imple

mentations, viewer icons can point to a node or between
nodes. Multiple viewers can be visible simultaneously in a
single graph stack workspace. For example, the primary posi
tion of the view icon can be immediately to the left of the
node. An exception to this can occur when two viewers are
looking at the same container, at different outputs. The spac
ing for these two representations can be eleven pixels apart on
the vertical axis, but icon spacing is 22 pixels on the vertical.

US 9,035,949 B1
21

The icons can be allowed to overlap one another in Z-index
order.

Multiple viewers and multiple snapshots can be located at
the same point in the graph stack. For instance, one viewer
may be rendering the RGB of a node while another viewer is
rendering the mask. A special representation can be used to
allow the user to open the stack of viewers available and select
one of the viewer icons.
The following are examples of interaction with a visual

representation of a graph. Selecting a viewer icon in the graph
stack makes its corresponding tab in the viewer panel the
front-most tab. The mode will change accordingly. The active
selection and drag region for a viewer icon is the left side of
the object. The part of the icon which appears to cover the
active/inactive toggle of a node is non-functional. Mouse
clicks on that region will pass through to the node underlying
the viewer icon and disable? enable it.

The artist can drag the viewer around the graph stack and
also use the keyboard to move the viewer up and down the
graph stack. In contrast, up and down arrows on the keyboard
might only allow the viewer to reposition up and down in the
current view in outline mode. To descend into a closed con
tainer, or to move the viewer into a container which is
expanded in columnar mode, the artist would use the right
arrow. In the case of opening a closed container, doing so can
open the closed container one leveland place the viewer at the
top of the stack. In the case where the container is already
expanded in columnar mode, the viewer can be relocated over
to the top of the stack in the column.

If there are multiple levels currently expanded in outline
mode in the column where the viewer is selected, keyboard
navigation should not let the viewer descend into an open
container unless the artist has used the right arrow to explic
itly descend into that container. In some implementations, the
viewer would only move up and down the stack at its current
level unless the user issued the instruction to descend. When
the viewer moves up one level as the top or bottom of a
container is reached, the viewer should remain at its new level
until instructed to descend a level.

The artist can jump from one input to the next, here termed
"puddle jumping. To puddle jump from one adjacent con
tainer into the next, the ALT+Up/Down Arrow can be used to
jump into the next container without first ascending a level.
Puddle jumping may be permitted only within currently vis
ible containers. Puddle jumping to a collapsed container can
expand the container in outline mode. If a container is
expanded in Column mode, the viewer can jump into it in the
column.

Puddle jumps also work for a Mask container. The artist
can use the Shift--Up/Down Arrow method to puddle jump.
When the viewer is pointing to a node with a mask, the artist
can jump to view the output of the Mask by pressing SHIFT+
Right Arrow. This will open mask and move the viewer to the
top of the Mask's stack. The same behavior can apply to any
container which has a secondary input.

Macros with multiple inputs can be navigated. A modifier
can be used to navigate their inputs. For example, SHIFT+
Right Arrow can trigger the macro to reveal any concealed
inputs. The viewer will by default jump to the top secondary
input, expanding it in the graph stack. When the viewer is
viewing the top level of the input, the left arrow can make the
viewer jump up a level and view the output of the macro
instead. The input can be auto-collapsed.

If the artist drops the viewer in a blank space in the graph,
the viewer is deleted, and the tab is closed. Holding down the
Alt key before dragging the viewer can spawn a new viewer

5

10

15

25

30

35

40

45

50

55

60

65

22
tab in the viewer panel. This preserves the existing viewer tab
in the viewer panel and makes a new tab for the new viewer.
Selecting the nested view version of the icon will expand the
container in outline mode in the graph stack and select it.
When the container is expanded, the icon for the viewer will
leave its position at the container level, show its location
inside of the container, and change its representation to the
foreground tab mode. A double click on a bookmarked viewer
will load that bookmark into the front-most tab in the viewer
panel.
The methods of interaction for loading a bookmark for the

viewer from the graph stack workspace can be identical to the
functions when the user clicks on a bookmark in the viewer
panel's bookmarks bar. This includes methods for loading the
viewer bookmarkinto a new tab. Versus overriding ordestroy
ing the current viewer. Holding down the ALT key while
double clicking the viewer bookmark can spawn a new tab in
the viewer for the bookmark. The viewer panel spawns a new
tab for the bookmark, and moves it to the front. The icon in the
graph stack can change to the active or selected version of a
viewer icon.

FIGS. 13 A-C show examples of icons 1300 corresponding
to viewer Snapshots of a visual representation of a composite
graph. A viewer Snapshot can be a saved pixel buffer of a
composite. The snapshot of the buffer is saved when instan
tiated by the artist and can be accessible to the project to be
saved with it. The use of a snapshot can enable the artist to see
the state of a composite as it was at an arbitrary point in the
build history of the composite. One or more viewer snapshots
can be used.

In some implementations, the snapshot does not hold any
special knowledge of the wiring of the graph or of the graphs
attributes; rather, can be an image. Attributes attached to a
Snapshot with regards to the graph stack include the location
in the comp from where it came. The Snapshot is instantiated
in the viewer. The graph stack represents the presence of the
Snapshot at the point of the graph where the viewer was
parked when the Snapshot was taken.
The representation of the snapshot can show the icon 1300

in the graph Stack parked next to the point in the graph where
the snapshot was taken. For example, FIG. 13A shows the
icon 1300A positioned next to a container and the icon 1300B
positioned in between two containers. Multiple Snapshots can
exist at the same location. These can be represented with a
special indicator in the graph stack next to the icons. For
example, FIG. 13B shows the icon 1300C that represents
multiple snapshots. As another example, the icon 1300D is
positioned in between two containers.
The icon may occupy the same location as the viewer icon

in the margin of the graph stack. The representation of a
viewer at the same location overrides the buffer representa
tion. In some implementations, a “multi-view icon can
expand to show the artist the possible viewers and Snapshots
available at the location and allow the artist to selectone of the
snapshots or viewers. For example, FIG. 13C shows the icons
1300C represented by a multi-view icon 1302.
The vertical position alongside the nodes in the graph stack

implies the Snapshot's position of the view of the graph. Just
as viewers can isolate an object, or view the output from a
point in the graph stack, the Snapshots can have the same
characteristic of being able to be placedonorabove a node for
representing both cases.
The following are examples of rules that can be applied to

interaction, in some implementations:
The buffer icon cannot be moved in the graph stack. It is

located at a specific point in the graph Stack to indicate where

US 9,035,949 B1
23

it was taken in the graph. If the area of the graph is no longer
valid, it will still be visible in the project browser, but will not
exist in the graph stack.
The snapshot can be selected. Doing so will:
Load the Snapshot into the front-most viewer panel
Populate the attribute editor with the buffers attributes and
move that buffer into the front-most viewer tab.

The attributes for a Snapshot are name and date/time stamp
as well as any notes which the user has placed on the Snapshot.
The snapshot can be deleted after selecting it. Deleting the

Snapshot can change the viewer over to the current graph
rendered at the same location, switching it to “live” mode.

FIGS. 14A-B show examples of groups of items 1400. The
graph stack panel can contain multiple components depend
ing on the nature of the work to be in the panel. The following
panel components can be included in a panel header 1402:
A name 1404 is the primary data in the panel header 1402.

It shares the same row across the panel with the graph stack
bookmarks and menus. In some implementations, the panel
header is the only region of the panel by which the panel can
be dragged to re-arrange panels in the workspace.
A panel menu 1406 contains commands specific to the

front-most workspace tab, and general graph stack specific
commands. The panel menu can be located immediately next
to the panel in the header and can appear as a part of the panel
header to identify it as the menu that is specific to the panel.
A bookmark bar 1408. One or more workspaces can be

saved for recall later by the user. The bookmark bar holds
links to saved workspaces and groups of workspaces. Groups
can be indicated with a triangle next to the name of the
bookmark.

To add a bookmark to the bar, the artist can performany of
the following actions:

Drag a tab to the bookmark bar. A bookmark is added for
that tab.

Right-click a tab (even background tabs) and select “New
Bookmark from the pop-up menu.

Drag from the blank-space to the right of all the tabs in the
Tab Bar, up to the bookmark bar. This adds the set of tabs
as a group to the bookmarks bar 1408. The entire set of
tabs can be restored with a single click.

Right-click in the blank-space to the right of all the tabs in
the Tab Bar, and select "New Bookmark . . .” from the
pop-up menu.

Right-click a blank space in the bookmark bar and select
“New Bookmark from the pop-up menu.

Click on the bookmark menu and select “Add
Bookmark . . . 'The front-most tab will be added as a
bookmark.

Rearranging of the bookmarks can be implemented as a
simple drag left-right operation by the artist.
To delete a bookmark, the artist can perform any of the

following actions:
Drag the bookmark from the bar, into the negative space of

the graph stack.
Right-click the bookmark and select “Delete Bookmark”
from the pop-up menu.

From the bookmark menu select the submenu item “Delete
bookmark . . . D/bookmark list”

In the list of bookmarks in the bookmark menu, the user
can hover on a bookmark to delete, and click on the “-”
icon to the right of the bookmark, to delete it.

If the list of desired bookmarks in the bookmark bar 1408
exceeds the available horizontal space available, an ">" icon
will appear on the far right side indicating there are more
bookmarks available than can be shown. Clicking on the icon
will open a menu from which the artist can select a bookmark.

5

10

15

25

30

35

40

45

50

55

60

65

24
To rename a bookmark, the artist right-clicks the book

mark, and selects "Rename from the pop-up menu. A
modal dialog can appearand allow the artist to change the title
of the bookmark.
The bookmark menu contains commands for managing the

bookmarks of graph stack workspace layouts. This menu
should include a sub-menu to list all bookmarks for the graph
stack workspace, including those not visible on the bookmark
bar.

Visibility of the bookmark can be implicit when the user
creates the bookmark via any of the above noted methods.

Visibility of a bookmark can be managed via the bookmark
menu. The menu can include a checkbox, for example to the
left of each bookmark in the menu, to facilitate this. The
checkbox enables visibility to be controlled for each book
mark in the bar without requiring additional dialog boxes.
Un-checking the box will turn off visibility in the bookmark
bar. To delete a bookmark, a '-' icon can appear on the right
side of each bookmark, upon hovering in the menu, and
provides a quick way to delete bookmarks from the list. This
method does not require an additional dialog box.
The panel header can include a tab bar 1410. In some

implementations, the workspace has notab by default, only a
title of the current workspace. Tabs can be generated when
there is more than one workspace in the graph stack.
To create a new workspace, the artist can perform one of the

following actions:
Click the "+” button to the right of the workspace name (or

to the right of the right-most tab) in the tab bar 1410.
Right click in the tab bar blank space (not on a specific tab)

and select “Create New workspace...' from the pop-up
e

Drag a node from the front-most graph stack workspace
into the blank space of the tab bar to create a new work
space with the node as the sole occupant in set in window
mode.

Re-arranging the tabs can be done by dragging the tabs
title to the right or left in the tab bar.

Dragging a tab from the graph stack performs an action
depending upon where the tab is released. For instance, drag
ging a tab from the graph Stack and dropping it, can triggeran
action as follows:

Tab is dropped onto the bookmark bar this creates a
bookmark for that workspace. The tab remains in the
graph stacks tab bar.

Tab is dropped onto another graph stack panel—this moves
that workspace to the destination panels set of tabs.

Tab is dropped onto the timeline panel—creates a tab in the
timeline-editor with the nodes currently visible in the
graph stack visible as tracks in the timeline.

Tab is dropped into a blank area of the desktop above the
operating system—this creates a new graph stack panel
with the current tab as the sole workspace. This removes
the tab from the existing graph stack panel.

To delete a tab from the graph stack panel, the artist can
perform any of the following actions:

Click on the 'x' button on the right of the tab title to close
the tab. There must be at least one workspace in the
graph stack. The last tab can convert to a simple work
space title.

Right-click the tab and select “Close Tab' from the pop-up
C.

A right-click pop-up menu for a tab can be available. It
should allow the artist to:

Save the tab as a bookmark.
Clone the current tab providing the artist with a new work

space based on the current graph stack tab.

US 9,035,949 B1
25

Close the tab.
A right-click pop-up menu for the tab bar would be avail

able in the blank area to the right of the right-most tab. It
should allow the artist to:

Create a new tab.
Save a group of tabs as a single bookmark.
Clone the current set of tabs in a new graph stack panel.
Close all tabs and leave a blank workspace.
The panel header 1402 can include a control for type of

indicator. The indicator mode is a pulldown menu which
controls what indicator type is displayed on the nodes in the
graph stack. Some example indicators that can be displayed
a.

Notes—this indicates if a node has notes attached to it.
Cached this indicates if the results of a node are currently

held in the cache.
Expressions—this indicates if a node has expressions on
any of its attributes.

Dependents—this indicates if an expression is accessing
data from this node

Dependencies—this indicates if a node has an expression
which has dependencies on other nodes.

A history navigation button set can enable the artist to
move backwards and forwards in the history of a given work
space with regards to what was expanded/collapsed/opened/
closed. By clicking a left (back) or right (forward) buttons, the
user can quickly return to an object which was previously
closed. The history is stored independently for each work
space tab. The history does not get saved with the project.
The panel here includes a links drawer 1412, for example

on the left side of the graph stack. A button to open and close
the drawer is on the bottom left side of the panel, in the graph
stack footer. The drawer can have a minimum size of 150
pixels. If the user hovers the cursor over the edge of the
drawer, a splitter can appear that allows the artist to alter the
size of the drawer.
The links drawer 1412 is where the user can save links to

favorite containers, searches and groups, for example. It pro
vides a quick way to access any container or function in a
project and bring it directly into the current workspace. The
links can be considered “Bookmarks for Objects', as opposed
to the bookmarks in the bookmarks bar. One difference is that
bookmarks in the bookmarks bar are specifically for work
spaces, and they save the layout of a workspace, and the state
and position of the nodes and containers visible in that work
space, when the bookmark is created. On the other hand, a
link to a node saves only the object name. Clicking it will
place the item into the currently visible workspace tab in
window mode, whereas clicking on a bookmark will refresh
the entire workspace.

The following are examples of interactions with links:
The artist can drag any node into the links drawer to add it

to the list of links.
While a node is selected in the graph stack workspace, the

artist can click the "+" sign at the bottom of the drawer to
add a link to that node.

Once an item is in the links list, clicking on the link in the
favorites category, will open the item in “window' mode
in the front-most graph stack workspace.

The list ordering can be arranged by the artist. Dragging a
link up or down inside of the panel will drag and drop the
link into the new location without loading it into the
front-most tab. Insertion point in the list will be shown
while dragging.

Dragging the link from the places drawer into the graph
stack will follow a particular ruleset based upon where
the user drops the link. It will behave the same as drag

10

15

25

30

35

40

45

50

55

60

65

26
ging a node which already exists in the workspace. If the
artist drops the link into another container, that moves
the node represented by the link into the container where
it is dropped. If the link is dropped into a blank space of
the graph stack workspace, the node to which the link
points is placed onto the workspace in “window' mode.
The artist can open it, or navigate its hierarchy. A right
click option can be provided on a link which would
enable the artist to reveal the hierarchy of the placement
of the link, and navigate to one of its parents.

The link can be deleted by right-clicking on the link and
selecting “Delete Link” from the pop-up menu.

A collection of several nodes can be saved as a user defined
group. In the links drawer 1412, they have an icon next to
them indicating they are a group and not a single node.
The following are examples of interactions with a group:
To create a group, the artist selects multiple nodes in the

graph stack and drags them to the drawer. A group is
created by default.

Selecting the "+” pulldown at the bottom of the list view
pops a menu allowing the artist to select “New Group'.
A new empty group is created.

The artist can drag items from the graph stack or from the
project browser onto an existing group. They will be
added to that group.

Still referring to FIG. 14A, the user can click on the group
in the link table 1412 that corresponds to the group 1400. In
response, a popup window shows the contents of the group.
For example, the group 1400 is seen to include five contain
ers. The popup window can disappear if the user clicks else
where than in the popup window. Clicking on another link
will move the popup to show the contents of the other group.
Arrow keys on the keyboard can drive the selection up and
down; however the selection stops at a link to a node. This
way, if an artist wishes to see the contents of different groups
they can click a single group link and use the arrow keys to
drive the selection up and down.
The popup window can be “torn off to be a floating win

dow and keep the group's contents visible. For example, in
FIG. 14B the user has torn off the group 1400, such as by
holding a mouse button while pointing to the group, and
dragging the group away from its current location. Tearing
causes a window to be generated, which persists in front of the
interface. Selection of nodes in the window can occur similar
to selecting that node in the graph stack, refreshing any
attribute editor which is currently viewing objects which are
selected. The floating window is linked to and is only viewing
the contents of the group which spawned it. If the artist then
clicks on another group in the links drawer, a new popup
window is spawned and does not re-use the previously torn
off window.
A group can be re-named by right-clicking on a group in

the link drawer and selecting “Rename Group' from the
popup menu. Nodes can be removed from the group by either
clicking on their “Close' button, or by selecting the node in
the group window and hitting “Delete' on the keyboard. The
representations of the nodes in the window can all have a
“Close” button.
A container cannot be opened in a floating window. Drag

ging from this window into the graph stack allows the artist to
work with it as they would any other item in the graph stack in
window mode. Double clicking a container will open the
container in “window mode” in the front-most graph stack
tab. There, the artist can interact with it as they normally
would interact with a node in the graph stack workspace.

US 9,035,949 B1
27

The artist can interact with all visible indicators and but
tons on the node, with the exception of the disclosure toggle.
This is to enable the artist quick access to disable nodes, or
change their composite mode.

FIG. 15 is a schematic diagram of a generic computer
system 1500. The system 1500 can be used for the operations
described in association with any of the computer-implement
methods described previously, according to one implementa
tion. The system 1500 includes a processor 1510, a memory
1520, a storage device 1530, and an input/output device 1540.
Each of the components 1510, 1520, 1530, and 1540 are
interconnected using a system bus 1550. The processor 1510
is capable of processing instructions for execution within the
system 1500. In one implementation, the processor 1510 is a
single-threaded processor. In another implementation, the
processor 1510 is a multi-threaded processor. The processor
1510 is capable of processing instructions stored in the
memory 1520 or on the storage device 1530 to display graphi
cal information for a user interface on the input/output device
1540.
The memory 1520 stores information within the system

1500. In some implementations, the memory 1520 is a com
puter-readable medium. The memory 1520 is a volatile
memory unit in Some implementations and is a non-volatile
memory unit in other implementations.
The storage device 1530 is capable of providing mass

storage for the system 1500. In one implementation, the stor
age device 1530 is a computer-readable medium. In various
different implementations, the storage device 1530 may be a
floppy disk device, a hard disk device, an optical disk device,
or a tape device.
The input/output device 1540 provides input/output opera

tions for the system 1500. In one implementation, the input/
output device 1540 includes a keyboard and/or pointing
device. In another implementation, the input/output device
1540 includes a display unit for displaying graphical user
interfaces.
The features described can be implemented in digital elec

tronic circuitry, or in computer hardware, firmware, Software,
or in combinations of them. The apparatus can be imple
mented in a computer program product tangibly embodied in
an information carrier, e.g., in a machine-readable storage
device, for execution by a programmable processor, and
method steps can be performed by a programmable processor
executing a program of instructions to perform functions of
the described implementations by operating on input data and
generating output. The described features can be imple
mented advantageously in one or more computer programs
that are executable on a programmable system including at
least one programmable processor coupled to receive data
and instructions from, and to transmit data and instructions to,
a data storage system, at least one input device, and at least
one output device. A computer program is a set of instructions
that can be used, directly or indirectly, in a computer to
perform a certain activity or bring about a certain result. A
computer program can be written in any form of program
ming language, including compiled or interpreted languages,
and it can be deployed in any form, including as a stand-alone
program or as a module, component, Subroutine, or other unit
Suitable for use in a computing environment.

Suitable processors for the execution of a program of
instructions include, by way of example, both general and
special purpose microprocessors, and the Sole processor or
one of multiple processors of any kind of computer. Gener
ally, a processor will receive instructions and data from a
read-only memory or a random access memory or both. The
essential elements of a computer area processor for executing

10

15

25

30

35

40

45

50

55

60

65

28
instructions and one or more memories for storing instruc
tions and data. Generally, a computer will also include, or be
operatively coupled to communicate with, one or more mass
storage devices for storing data files; Such devices include
magnetic disks, such as internal hard disks and removable
disks; magneto-optical disks; and optical disks. Storage
devices Suitable for tangibly embodying computer program
instructions and data include all forms of non-volatile
memory, including by way of example semiconductor
memory devices, such as EPROM, EEPROM, and flash
memory devices; magnetic disks Such as internal hard disks
and removable disks; magneto-optical disks; and CD-ROM
and DVD-ROM disks. The processor and the memory can be
Supplemented by, or incorporated in, ASICs (application
specific integrated circuits).
To provide for interaction with a user, the features can be

implemented on a computer having a display device such as a
CRT (cathode ray tube) or LCD (liquid crystal display) moni
tor for displaying information to the user and a keyboard and
a pointing device Such as a mouse or a trackball by which the
user can provide input to the computer.
The features can be implemented in a computer system that

includes a back-end component, Such as a data server, or that
includes a middleware component, such as an application
server or an Internet server, or that includes a front-end com
ponent, such as a client computer having a graphical user
interface or an Internet browser, or any combination of them.
The components of the system can be connected by any form
or medium of digital data communication Such as a commu
nication network. Examples of communication networks
include, e.g., a LAN, a WAN, and the computers and networks
forming the Internet.
The computer system can include clients and servers. A

client and server are generally remote from each other and
typically interact through a network, Such as the described
one. The relationship of client and server arises by virtue of
computer programs running on the respective computers and
having a client-server relationship to each other.
A number of implementations have been described. Nev

ertheless, it will be understood that various modifications
may be made without departing from the spirit and scope of
this disclosure. Accordingly, other implementations are
within the scope of the following claims.

What is claimed is:
1. A computer-implemented method for visually represent

ing a composite graph for an image, the method comprising:
providing, in a computer system, a visual representation of

a composite graph for an image, the visual representa
tion comprising a top-level graphical container, the top
level graphical container comprising:
first items representing:

visual elements of the image; and
graphical containers for image functions; and

second items representing the image functions, wherein:
each of the second items is visually encapsulated

within at least one of the graphical containers;
the first items and second items are presented in the

top-level graphical container in a visual stack that
represents a compositing order for the elements of
the image and the image functions;

at least one of the graphical containers includes a
mask icon indicating that a mask is applied to the
contents of the at least one graphical container; and

each image function affects elements of the image
ordered below the image function in the visual
stack;

US 9,035,949 B1
29

receiving, in the computer system, a first input selecting an
expansion mode for presenting contents of a first graphi
cal container, each of the graphical containers having:
a first expansion mode, wherein the contents are dis

played generally adjacent to and outside of the top
level graphical container with a visual connection to
an original location in the top-level graphical con
tainer; and

a second expansion mode, wherein the contents are dis
played generally within the top-level graphical con
tainer;

providing, in the computer system, a first modified visual
representation of the composite graph in response to the
first input, wherein the first modified visual representa
tion maintains the order of the image functions defined
by the composite graph and has the first graphical con
tainer expanded according to the selected expansion
mode, wherein upon receipt of a second input, the
Selected expansion mode for presenting contents of the
first graphical containeris modified to a previously unse
lected expansion mode and a corresponding second
modified visual representation of the composite graph is
provided;

receiving a third input that requests a first view and a
second view of the visual representation, wherein:
the first view comprises graphical containers from a first

portion of the visual representation; and
the second view comprises graphical containers from a

second portion of the visual representation, the sec
ond portion being from a topologically separate area
of the visual representation than the first portion, the
second view being provided by tearing off the graphi
cal containers from the second portion of the visual
representation and relocating them adjacent to the
graphical containers of the first view; and

generating a third modified visual representation of the
composite graph in response to the third input, the third
modified visual representation providing at least the two
views, wherein the third modified visual representation
maintains an order of image functions in the graphical
containers of the first and second views.

2. The computer-implemented method of claim 1, wherein
the first modified visual representation further includes,
simultaneously with the first graphical container that is
expanded according to the selected expansion mode, a second
graphical container expanded using another expansion mode
of the graphical containers than the selected expansion mode.

3. The computer-implemented method of claim 2, wherein
the first graphical container is expanded using the first expan
sion mode and has included therein the second graphical
container which is expanded using the second expansion
mode.

4. The computer-implemented method of claim 1, wherein
the first expansion mode includes:

presenting the first graphical container and at least one
other first or second item organized in a generally verti
cal list in the visual representation, wherein

the expanded first graphical container is horizontally offset
to a location on one side of the vertical list and visually
connected to the first graphical container in the vertical
list, and the expanded first graphical container includes
at least one first or second item visible at the location.

5. The computer-implemented method of claim 1, wherein
the second expansion mode includes:

presenting the first graphical container and at least one
other first or second item organized in a generally verti
cal list in the visual representation, wherein the

10

15

25

30

35

40

45

50

55

60

65

30
expanded first graphical container is included in the
Vertical list starting where the first graphical container is
located, and the other first or second item is displaced
vertically in the vertical list to accommodate the
expanded first graphical container, and the expanded
first graphical container includes at least one first or
second item visible in the vertical list.

6. The computer-implemented method of claim 1, further
comprising:

receiving a user modification of a graphical container in at
least one of the views while the third modified visual
representation is displayed; and

modifying the composite graph according to the user modi
fication.

7. The computer-implemented method of claim 1, wherein
a user creates the composite graph by choosing the order and
assembling the graphical containers so that the composite
graph reflects the order, the assembly being done by making
one or more inputs in the computer system causing each of the
graphical containers to be placed in respective selected loca
tions.

8. A computer program product embodied in a non-transi
tory computer-readable storage medium and comprising
instructions that when executed by one or more processors
cause the one or more processors to perform operations com
prising:

providing, in a computer system, a visual representation of
a composite graph for an image, the visual representa
tion comprising a top-level graphical container, the top
level graphical container comprising:
first items representing:

visual elements of the image; and
graphical containers for image functions; and

second items representing the image functions, wherein:
each of the second items is visually encapsulated

within at least one of the graphical containers;
the first items and second items are presented in the

top-level graphical container in a visual stack that
represents a compositing order for the elements of
the image and the image functions;

at least one of the graphical containers includes a
mask icon indicating that a mask is applied to the
contents of the at least one graphical container; and

each image function affects elements of the image
ordered below the image function in the visual
stack;

receiving, in the computer system, a first input selecting an
expansion mode for presenting contents of a first graphi
cal container, each of the graphical containers having:
a first expansion mode, wherein the contents are dis

played generally adjacent to and outside of the top
level graphical container with a visual connection to
an original location in the top-level graphical con
tainer, and

a second expansion mode, wherein the contents are dis
played generally within the top-level graphical con
tainer,

providing, in the computer system, a first modified visual
representation of the composite graph in response to the
first input, wherein the first modified visual representa
tion maintains the order of the image functions defined
by the composite graph and has the first graphical con
tainer expanded according to the selected expansion
mode, wherein upon receipt of a second input, the
Selected expansion mode for presenting contents of the
first graphical containeris modified to a previously unse

US 9,035,949 B1
31

lected expansion mode and a corresponding second
modified visual representation of the composite graph is
provided;

receiving a third input that requests a first view and a
second view of the visual representation, wherein:
the first view comprises graphical containers from a first

portion of the visual representation; and
the second view comprises graphical containers from a

second portion of the visual representation, the sec
ond portion being from a topologically separate area
of the visual representation than the first portion, the
second view being provided by tearing off the graphi
cal containers from the second portion of the visual
representation and relocating them adjacent to the
graphical containers of the first view; and

generating a third modified visual representation of the
composite graph in response to the third input, the third
modified visual representation providing at least the two
views, wherein the third modified visual representation
maintains an order of image functions in the graphical
containers of the first and second views.

9. The computer program product of claim 8, wherein the
first modified visual representation further includes, simulta
neously with the first graphical container that is expanded
according to the selected expansion mode, a second graphical
container expanded using another expansion mode of the
graphical containers than the selected expansion mode.

10. The computer program product of claim 9, wherein the
first graphical container is expanded using the first expansion
mode and has included therein the second graphical container
which is expanded using the second expansion mode.

11. A computer system comprising:
an image processing module tangibly embodied in a com

puter-readable storage medium, the image processing
module configured to render an image by performing
image functions in an order defined by a composite
graph for the image:

a graph management module tangibly embodied in a com
puter-readable storage medium, the graph management
module configured for: (i) a user to generate the com
posite graph, and for (ii) generating a visual representa
tion of the composite graph, the visual representation
comprising a top-level graphical container, the top-level
graphical container comprising:
first items representing:

visual elements of the image; and
graphical containers for the image functions, wherein

each of the graphical containers has:
a first expansion mode, wherein the contents are

displayed generally adjacent to and outside of
the top-level graphical container with a visual
connection to an original location in the top
level graphical container; and

a second expansion mode, wherein the contents are
displayed generally within the top-level graphi
cal container, and

second items representing the image functions, wherein:
each of the second items is visually encapsulated

within at least one of the graphical containers;
the first items and second items are presented in the

top-level graphical container in a visual stack that
represents a compositing order for each of the ele
ments of the image and image functions;

at least one of the graphical containers includes a
mask icon indicating that a mask is applied to the
contents of the at least one graphical container, and

10

15

25

30

35

40

45

50

55

60

65

32
each image function affects elements of the image

ordered below the image function in the visual
stack; and

a display device for presenting the visual representation
that presents:
after receiving a first input selecting one of the first and

second expansion modes for presenting contents of a
first graphical container, a first modified visual repre
sentation of the composite graph in response to the
first input, the first modified visual representation
maintaining the order of the image functions defined
by the composite graph and having the first graphical
container expanded according to the selected expan
sion mode, wherein upon receipt of a second input,
the selected expansion mode for presenting contents
of the first graphical container is modified to a previ
ously unselected expansion mode and a correspond
ing second modified visual representation of the com
posite graph is provided; and

after receiving a third input that requests a first view and
a second view of the visual representation, a third
modified visual representation of the composite graph
providing at least two views, wherein:
the first view comprises graphical containers from a

first portion of the visual representation;
the second view comprises graphical containers from

a second portion of the visual representation, the
second portion being from a topologically separate
area of the visual representation than the first por
tion, the second view being provided by tearing off
the graphical containers from the second portion of
the visual representation and relocating them adja
cent to the graphical containers of the first view:
and

the third modified visual representation maintains an
order of image functions in the graphical containers
of the first and second views.

12. The computer system product of claim 11, wherein the
graphical user interface further comprises an input function to
cause each of the graphical containers to be placed in a
selected location so that the composite graph reflects the
order.

13. The computer system product of claim 12, wherein the
input function comprises at least one of: (i) a drag-and-drop
function, the assembly being done by dragging each of the
graphical containers and dropping the dragged graphical con
tainer in the selected location; and (ii) a keyboard shortcut.

14. A computer program product embodied in a non-tran
sitory computer-readable storage medium, the computer pro
gram product including instructions that, when executed,
generate on a display device a graphical user interface for
visually representing a composite graph for an image, the
graphical user interface comprising:

a visual representation of the composite graph for the
image, the visual representation comprising a top-level
graphical container;

first items included in the top-level graphical container, the
first items representing:
visual elements of the image; and
graphical containers for image functions, wherein each

of the graphical containers has:
a first expansion mode, wherein the contents are dis

played generally adjacent to and outside of the
top-level graphical container with a visual connec
tion to an original location in the top-level graphi
cal container; and

US 9,035,949 B1
33

a second expansion mode, wherein the contents are
displayed generally within the top-level graphical
container; and

Second items included in the top-level graphical container,
the second items representing the image functions,
wherein:
each of the second items is visually encapsulated within

at least one of the graphical containers;
the first items and second items are presented in the

top-level graphical container in a visual stack that
represents a compositing order for each of the ele
ments of the image and image functions; and

each image function affects elements of the image
ordered below the image function in the visual stack;

wherein, after receiving a first input selecting one of the
first and second expansion modes for presenting con
tents of a first graphical container, the graphical user
interface generates a first modified visual representation
of the composite graph in response to the input, the first
modified Visual representation maintaining the order of
the image functions defined by the composite graph and
having the first graphical container expanded according
to the selected expansion mode, and upon receipt of a
Second input, the selected expansion mode for present
ing contents of the first graphical container is modified
to a previously unselected expansion mode and a corre
sponding second modified visual representation of the
composite graph is provided; and

wherein after receiving a third input that requests a first
view and a second view of the visual representation, the
graphical user interface generates a third modified visual
representation of the composite graph providing at least
two views, wherein:
the first view comprises graphical containers from a first

portion of the visual representation;
the second view comprises graphical containers from a

second portion of the visual representation, the sec
ond portion being from a topologically separate area
of the visual representation than the first portion, the

5

10

15

25

30

35

34
second view being provided by tearing off the graphi
cal containers from the second portion of the visual
representation and relocating them adjacent to the
graphical containers of the first view; and

the third modified visual representation maintains an
order of image functions in the graphical containers of
the first and second views.

15. The computer program product of claim 14, wherein
the graphical user interface further comprises an input func
tion to cause each of the graphical containers to be placed in
a selected location so that the composite graph reflects the
order.

16. The computer program product of claim 15, wherein
the input function comprises at least one of: (i) a drag-and
drop function, the assembly being done by dragging each of
the graphical containers and dropping the dragged graphical
container in the selected location; and (ii) a keyboard short
Cut.

17. The computer program product of claim 14, wherein
the graphical user interface further comprises:

a project panel that lists each composite that is involved in
a project, including the composite graph, and provides
access to sources for the project.

18. The computer program product of claim 14, wherein
the graphical user interface further comprises:

a composite map panel providing a single location for cross
referencing multiple types of data, overlaid on a map of
a structure of the composite graph.

19. The computer program product of claim 14, wherein
the graphical user interface further comprises:

a timeline panel providing access to timing parameters for
nodes and objects in the composite graph.

20. The computer program product of claim 14, wherein
the graphical user interface further comprises:

an asset panel providing access to a pipeline for bringing
rendered images and elements into a project that
includes the composite graph.

ck ck ck ck ck

